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Abstract: In this study, we present a mild solution to the Hilfer fractional differential equations
with infinite delay. Firstly, we establish the results on an infinite interval; to achieve this, we
use the generalized Ascoli–Arzelà theorem and Mönch’s fixed point theorem via a measure of
noncompactness. Secondly, we consider the existence of a mild solution when the semigroup is
compact, and the Schauder fixed-point theorem is used. The outcome is demonstrated using an
infinitesimal operator, fractional calculus, semigroup theory, and abstract space. Finally, we present
an example to support the results.

Keywords: Hilfer fractional derivative; mild solution; fixed-point theorem; infinite interval

1. Introduction

In many physical processes, fractional calculus with many fractional derivatives (FDve)
is highly concentrated. The fractional differential (FDtial) system has recently attracted
a great deal of attention due to its range of wondrous scientific and technological appli-
cations. Fractional systems may be used to solve a wide range of issues in various fields,
including viscoelasticity, electrical systems, electrochemistry, fluid flow, etc. Differential
inclusions, which are an extension of differential equations and inequalities and may be
regarded of as a branch of control theory, have several potential applications. When one
is adept at employing differential inclusions, dynamical systems with velocities that are
not solely determined by the system’s state are easier to analyze. Numerous studies have
been undertaken to investigate boundary value problems. Additionally, several inves-
tigations have been conducted to determine if there are solutions that are applicable to
FDtial systems as well as FDtial . In [1], the author established the concepts of semigroup
theory, infinitesimal generator, and the abstract Cauchy problem. Meanwhile, researchers
presented basic ideas and results related to fractional calculus and their applications [2–5].
In [6], the authors established their results related to various fractional differential systems.
Meanwhile, several research papers [7–9] validate the discussion of this theory and its
applications in fractional calculus.

A newly developed fractional derivative known as the Hilfer fractional derivative,
which includes both the Caputo fractional and the Riemann–Liouville fractional derivatives,
was proposed by Hilfer [10]. The article [11] began by determining a mild solution to the
Hilfer fractional differential equations via the Laplace transform and fixed-point method.
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In several recent articles [12–14], the existence and the controllability of the Hilfer fractional
differential systems via fixed-point approach have been analyzed. In the article in [15], the
Hilfer fractional differential system with almost sectorial operators is explained.

Recent research on fractional differential systems has predominantly focused on the
existence of solutions in the limited interval [0,b]. Various fixed-point theorems and the
Ascoli–Arzelà theorem are frequently used in this research. The traditional Ascoli–Arzelà
theorem is a well-known technique that provides necessary and sufficient conditions to
determine how abstract continuous functions relate to one another; however, it is only
applicable to finite closed intervals. But, in [16], the author studied the existence of a
mild solution to the Hilfer fractional differential system on a semi-infinite interval via the
generalized Ascoli–Arzelà theorem. Additionally, in [17], the researchers established the
existence of mild solutions for the system of Hilfer fractional derivatives (HFDve) on an
infinite interval. The generalized Ascoli–Arzelà theorem and the fixed-point theorem were
used to prove the existence of the mild solution.

Our article’s significant contributions are as follows:

(i) For the Hilfer fractional differential system, we show the necessary and sufficient
conditions for the mild solution’s existence.

(ii) In this work, we study when a fractional differential system (1) has a mild solution on
the infinite interval (0,+∞).

(iii) Our system (1) is defined by an infinite delay.
(iv) We show that our result is consistent with the concept of the generalized Ascoli–Arzelà

theorem (8).
(v) We begin by proving the existence of the system via the measure of noncompactness

by using the Mönch′s fixed-point theorem (7).
(vi) Next, we prove the existence of a mild solution to the system for a compact semigroup.

Schauder’s fixed-point theorem is used in this condition.
(vii) Finally, an example is presented to illustrate the results.

In this study, by applying the generalized Ascoli–Arzelà theorem and some novel
approaches, we establish the existence of mild solutions in an infinite interval via a measure
of noncompactness (MNC). Consider the following system:{

H Dh,q
0+ x(a) = Ax(a) + F

(
a, xa

)
, a ∈ (0,+∞),

I(1−h)(1−q)0+ x(a) = φ(a) ∈ Sλ, a ∈ (−∞, 0],
(1)

where H Dh,q
0+ is the HFDve of order 0 < h < 1 and type 0 ≤ q ≤ 1, A is the infinitesimal

generator in Banach space Y, and F : [0, ∞)× Sλ → Y is a function.
This paper is organized as follows: The principles of fractional calculus, abstract spaces,

and semigroup are described in Section 2. In Section 3, we begin by proving the existence
of the mild solution using MNC. We analyze a scenario in which the semigroup is compact
and demonstrate the existence of the mild solution in Section 3.2. In Section 4, we provide
an example to highlight our key principles. The final section contains the conclusions.

2. Preliminaries

We begin by defining the key concepts, theorems, and lemmas that are used throughout
the whole article.

Consider Y as a Banach space, with the norm | · |. Let I = [0,+∞) and C(I,Y) be the
collection of all continuous functions from I into Y. Now, we express

Cea
(
I,Y

)
=

{
x ∈ C(I,Y) : lim

a→+∞
e−a|x(a)| = 0

}
, (2)

where ‖x‖ea = sup
a∈I

e−a|x(a)| < +∞, which implies that Cea
(
I,Y

)
is a Banach space.
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Referring to the article in [18], next, we introduce an abstract phase space Sλ. Let
λ : (−∞, 0]→ (0,+∞) be continuous along Ω =

∫ 0
−∞ λ(a)da < +∞. Now, for every k > 0,

we have

S =

{
δ : [−k, 0]→ Y : δ(a) is bounded and measurable

}
,

and take the space S with the norm

‖δ‖[−k,0] = sup
a∈[−k,0]

‖δ(a)‖, for every δ ∈ S.

Next, we set

Sλ =

{
δ : (−∞, 0]→ Y

∣∣ for all k > 0, δ|[−k,0] ∈ S and
∫ 0

−∞
λ(s)‖δ‖[s,0]ds < +∞

}
.

If Sλ is endowed with

∥∥δ
∥∥

Ω =
∫ 0

−∞
λ(a)‖δ‖[a,0]da, for every δ ∈ Sλ; thus,

(
Sλ, ‖ · ‖Ω

)
is a Banach space.

Next, we define the set

S′λ =

{
x ∈ C

(
R,Y

)
: lim
a→+∞

e−a|x(a)| = 0
}

.

Let ‖ · ‖′Ω in S′λ be the seminorm defined as

‖x‖′Ω = ‖φ‖Ω + sup
{
‖x(a)‖ : a ∈ (0,+∞)

}
, x ∈ S′λ.

Lemma 1 ([18]). If x ∈ S′λ, then for a ∈ I xa ∈ Sλ. Furthermore,

Ω|x(a)| ≤ ‖xa‖Ω ≤ ‖φ‖Ω + Ω sup
r∈[0,a]

|x(r)|, Ω =
∫ 0

−∞
λ(a)da < +∞.

Lemma 2 ([1] Hille–Yosida Theorem). The linear operator A is the infinitesimal generator of a
C0 semigroup {T(a), a ≥ 0} in Banach space Y if and only if

(i) A is closed and D(A) = Y,
(ii) ρ(A) is the resolvent set of A contains R+ and, for every λ > 0, it holds that

∥∥R(λ, A)
∥∥ ≤ 1

λ
,

where R(λ, A) = (λI − A)−1 and R(λ)z =
∫ ∞

0 e−λzT(z)zdz.

Lemma 3 ([11]). The HFDtial system (1) is identical to the integral equation

x(a) =
φ(a)

Γ(q(1− h) + h)
a(q−1)(1−h) +

1
Γ(h)

∫ a

0
(a− s)h−1[Ax(s) + F

(
s, xs

)]
ds, a ∈ I.

Definition 1. A function x ∈ C(R,Y) is a mild solution to the system (1), which satisfies

x(a) = Sh,q(a)φ0 +
∫ a

0
Ph(a− s)F

(
s, xs

)
ds, a ∈ (0,+∞), (3)

where Sh,q(a) = Ih(1−q)0+ Ph(a), Ph = ah−1Qh, and Qh(a) =
∫ ∞

0 hθWh(θ)T
(
ahθ
)
dθ.
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Lemma 4 ([11]). If {T(a), a > 0} is a compact operator, then Sh,q(a) and Qh(a) are also
compact operators.

Lemma 5 ([11]). For any fixed a > 0, Qh(a), Ph(a) and Sh,q(a) are linear operators, i.e., for
every x ∈ Y,∣∣Qh(a)x

∣∣ ≤ L′

Γ(h)
∣∣x∣∣, ∣∣Ph(a)x

∣∣ ≤ L′

Γ(h)
ah−1∣∣x∣∣ and

∣∣Sh,q(a)x
∣∣ ≤ L′

Γ(q(1− h) + q)
a(1−h)(q−1)∣∣x∣∣.

Lemma 6 ([11]). Suppose {T(a), a > 0} is equicontinuous, then the operators Qh(a), Ph(a)
and Sh,q(a) are strongly continuous, i.e., for every x ∈ Y and a2 > a1, it holds∣∣Sh,q(a2)x− Sh,q(a1)x

∣∣→ 0,∣∣Ph(a2)x− Ph(a1)x
∣∣→ 0,

∣∣Qh(a2)x−Qh(a1)x
∣∣→ 0, as a2 → a1.

Definition 2. The Hausdorff measure of noncompactness µ(·) is defined as µ(O) = inf
{

θ > 0 :
O can be covered by a finite number of balls with radii θ

}
, where O ⊂ Y.

Theorem 1 ([19]). If {xk}+∞
k=1 is a set of Bochner integrable functions from I to Y with the estimate

property, ‖xk(a)‖ ≤ µ1(a) for almost all a ∈ I and every k ≥ 1, where µ1 ∈ L1(I,R), then the
function ϕ(a) = µ

({
xk(a) : k ≥ 1

})
is in L1(I,R) and satisfies

µ

({ ∫ a

0
xk(s

)
ds : k ≥ 1

})
≤ 2

∫ a

0
ϕ(s)ds.

Lemma 7 ([20]). Suppose O is a closed convex subset of Y and 0 ∈ O. Suppose f : O → Y is
a continuous map which fulfills Mönch′s condition; that is, if O1 ⊂ O is countable and O1 ⊂
conv

(
{0} ∪ F(O1)

)
, then O1 is compact. Then, F has a fixed point in O.

Let us consider the following hypotheses:

(H1) {T(a), a > 0} is equicontinuous; that is, T(a) is continuous in the uniform operator
topology for a > 0 and there exists a constant L > 0 such that ‖T(a)‖ ≤ L.

(H2) Next, the function F fulfills following:

(a) F(a, ·) : I× Sλ → Y is Lebesgue measurable with respect to a on I, F(·, φ) is
continuous with respect to each φ on Sλ.

(b) There exist λ1 ∈ (0, q), 0 < q < 1, the function MF ∈ L
1

λ1
(
I,R+

)
, and a

positive integrable function ψ : R+ → R+, such that∣∣F(a, x)
∣∣ ≤ MF(a)ψ

(
‖φ‖Ω

)
, for all φ ∈ Sλ, a ∈ (0, ∞)

and ψ satisfies lim inf
n→∞

ψ(n)
n = 0.

(c) There exist λ2 ∈ (0, q) and M∗F ∈ L
1

λ2
(
I,R+

)
, such that Sλ2 ⊂ Sλ is bounded:

µ

(
F
(
a, Sλ2

))
≤ M∗F(a)

[
sup

−∞<φ≤0
µ(Sλ2(φ))

]
for almost all a ∈ I, where µ is the Hausdorff measure of noncompactness.

3. Extant
3.1. Semigroup is Noncompact

Here, we present the following generalized form of the Ascoli–Arzelà theorem.

Lemma 8 ([16]). The set G ⊂ Cea(I,Y) is relatively compact if and only if the succeeding
conditions are satisfied:
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1. the set W =
{
k : k(a) = e−ax(a), x ∈ G

}
is equicontinuous on [0, b] for any b > 0;

2. for any a ∈ I, W(a) = e−aG(a) is relatively compact in Y;
3. lim

a→∞
e−a|x(a)| = 0 uniformly for x ∈ G.

Let us consider the operator Φ : S′λ → S′λ defined as

Φ(x(a)) =

{
Φ1(a), (−∞, 0],
Sh,q(a)φ0 +

∫ a
0 (a− s)h−1Qh(a− s)F

(
s, xs

)
ds, a ∈ (0, ∞).

(4)

For Φ1 ∈ Sλ, we define Φ̂ by

Φ̂(a) =

{
Φ1(a), a ∈ (−∞, 0],
Sh,q(a)φ0, a ∈ I,

then Φ̂ ∈ S′λ. Let xa = [wa + Φ̂a], −∞ < a < +∞. It is simple to demonstrate that x fulfills
Equation (3) if and only if w satisfies w0 = 0 and

w(a) =
∫ a

0
(a− s)h−1Qh(a− s)F

(
s, ws + Φ̂s

)
ds, a ∈ (0,+∞).

Let S′′λ = {w ∈ S′λ : w0 ∈ Sλ}. For any w ∈ S′λ,

‖w‖′Ω =‖w0‖Ω + sup{‖w(s)‖ : 0 ≤ s < +∞}
= sup{‖w(s)‖ : 0 ≤ s < +∞}.

Thus,
(
S′′λ, ‖ · ‖′Ω

)
is a Banach space.

For r > 0, choose Sr = {w ∈ S′′λ : ‖w‖′Ω ≤ r}. Then, Sr ⊂ S′′λ is uniformly bounded,
and for w ∈ Sr, by Lemma 1, it holds that∥∥wa + Φ̂a

∥∥
Ω ≤

∥∥wa∥∥Ω +
∥∥Φ̂a

∥∥
Ω

≤ Ω
(
r+ L′′a(1−h)(q−1)φ0

)
+
∥∥Φ1

∥∥
Ω

= r′, (5)

where L′′ = L′

Γ(q(1−h)+q)
.

Let us consider the operator Φ : S′′λ → S′′λ defined by

Φ′w(a) =

{
0, a ∈ (−∞, 0],
a(1−h)(1−q)

∫ a
0 (a− s)h−1Qh(a− s)F

(
s, ws + Φ̂s

)
ds, a ∈ I.

We show that Φ has a fixed point. First, we prove

Lemma 9. Suppose that (H1)− (H2) are satisfied; then, W = {k : k(a) = e−a
(
Φ′x

)
(a), x ∈

Sr} is equicontinuous on [0, b], where b > 0 and lim
a→∞

e−a|(Φ′x)(a)| = 0 uniformly for x ∈ Sr.

Proof. Step 1. We show that s is equicontinuous. For any a1, a2 ∈ (0, ∞) where a1 < a2,
we obtain
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∣∣∣∣e−a2(Φ′x)(a2)− e−a1(Φ′x)(a1)

∣∣∣∣
≤
∣∣∣∣a(1−h)(1−q)2 e−a2

∫ a2

0
(a2 − s)h−1Qh(a2 − s)F

(
s, ws + Φ̂s

)
ds

− a
(1−h)(1−q)
1 e−a1

∫ a1

0
(a1 − s)h−1Qh(a1 − s)F

(
s, ws + Φ̂s

)
ds
∣∣∣∣

≤
∣∣∣∣a(1−h)(1−q)2 e−a2

∫ a2

a1

(a2 − s)h−1Qh(a2 − s)F
(
s, ws + Φ̂s

)
ds
∣∣∣∣

+

∣∣∣∣a(1−h)(1−q)2 e−a2

∫ a1

0
(a2 − s)h−1Qh(a2 − s)F

(
s, ws + Φ̂s

)
ds
∣∣∣∣

−
∣∣∣∣a(1−h)(1−q)2 e−a2

∫ a1

0
(a2 − s)h−1Qh(a1 − s)F

(
s, ws + Φ̂s

)
ds
∣∣∣∣

+

∣∣∣∣a(1−h)(1−q)2 e−a2

∫ a1

0
(a2 − s)h−1Qh(a1 − s)F

(
s, ws + Φ̂s

)
ds
∣∣∣∣

−
∣∣∣∣a(1−h)(1−q)1 e−a1

∫ a1

0
(a1 − s)h−1Qh(a1 − s)F

(
s, ws + Φ̂s

)
ds
∣∣∣∣

≤
∣∣∣∣a(1−h)(1−q)2 e−a2

∫ a2

a1

(a2 − s)h−1Qh(a2 − s)F
(
s, ws + Φ̂s

)
ds
∣∣∣∣

+

∣∣∣∣a(1−h)(1−q)2 e−a2

∫ a1

0
(a2 − s)h−1[Qh(a2 − s)−Qh(a1 − s)

]
F
(
s, ws + Φ̂s

)
ds
∣∣∣∣

+

[
a
(1−h)(1−q)
2 e−a2

∫ a1

0
(a2 − s)h−1ds− a

(1−h)(1−q)
1 e−a1

∫ a1

0
(a1 − s)h−1ds

]
×
∣∣∣∣Qh(a1 − s)F

(
s, ws + Φ̂s

)∣∣∣∣
≤ I1 + I2 + I3.

We observe that

I1 =

∣∣∣∣a(1−h)(1−q)2 e−a2

∫ a2

a1

(a2 − s)h−1Qh(a2 − s)F
(
s, ws + Φ̂s

)
ds
∣∣∣∣

≤ L′

Γ(h)
a
(1−h)(1−q)
2 e−a2

∫ a2

a1

(a2 − s)h−1MFψ(r′)ds

≤ L′

Γ(h)h
a
(1−h)(1−q)
2 e−a2MFψ(r′)

∣∣(a2 − a1)
∣∣,

and we obtain I1 → 0 when a2 → a1. For arbitrary small ε > 0 it holds

I2 =

∣∣∣∣a(1−h)(1−q)2 e−a2

∫ a1

0
(a2 − s)h−1[Qh(a2 − s)−Qh(a1 − s)

]
F
(
s, ws + Φ̂s

)
ds
∣∣∣∣

≤ a
(1−h)(1−q)
2 e−a2

∫ a1−ε

0
(a2 − s)h−1

∥∥∥∥Qh(a2 − s)−Qh(a1 − s)

∥∥∥∥∣∣F(s, ws + Φ̂s

)∣∣ds
+ a

(1−h)(1−q)
2 e−a2

∫ a1

a1−ε
(a2 − s)h−1

∥∥∥∥Qh(a2 − s)−Qh(a1 − s)

∥∥∥∥∣∣F(s, ws + Φ̂s

)∣∣ds
≤ a

(1−h)(1−q)
2 e−a2

∫ a1−ε

0
(a2 − s)h−1MFψ(r′)ds sup

s∈[0,a1−ε]

∥∥∥∥Qh(a2 − s)−Qh(a1 − s)

∥∥∥∥
+

L′

Γ(h)h
a
(1−h)(1−q)
2 e−a2

∫ a1

a1−ε
(a2 − s)h−1MFψ(r′)ds.
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Based on Lemma 6, I2 → 0 when a2 → a1.

I3 =

[
a
(1−h)(1−q)
2 e−a2

∫ a1

0
(a2 − s)h−1 − a

(1−h)(1−q)
1 e−a1

∫ a1

0
(a1 − s)h−1

]
×
∣∣∣∣Qh(a1 − s)F

(
s, ws + Φ̂s

)
ds
∣∣∣∣

≤ L′

Γ(h)
MFψ(r′)

[
a
(1−h)(1−q)
2 e−a2

∫ a1

0
(a2 − s)h−1ds− a

(1−h)(1−q)
1 e−a1

∫ a1

0
(a1 − s)h−1ds

]
Clearly, I3 → 0 when a2 → a1.

Therefore, W = {k : k(a) = e−a
(
Φ′x

)
(a), x ∈ Sr} is equicontinuous.

Step 2. Now, we prove that lim
a→∞

e−a|(Φ′x)(a)| = 0 uniformly for x ∈ Sr. For any x ∈ Sr,

from Lemma 5 and (H2), we obtain

∣∣(Φ′x)(a)∣∣ ≤ a(1−h)(1−q)
∫ a

0
(a− s)h−1ds

∣∣Qh(a− s)
∣∣∣∣F(s, ws + Φ̂s

)∣∣
≤ L′

Γ(h)
MFψ(r′)a(1−h)(1−q)

∫ a

0
(a− s)h−1ds

≤ L′

hΓ(h)
a1−q(1−h)MFψ(r′),

thus

lim
a→∞

e−a
∣∣(Φ′x)(a)∣∣ ≤ L′

hΓ(h)
lim
a→∞

e−aa1−q(1−h)MFψ(r′) = 0.

Therefore, lim
a→∞

e−a
∣∣(Φ′x(a))∣∣ = 0 uniformly for x ∈ Sr.

Lemma 10. Assume that the hypotheses (H1) – (H2) hold, then Φ′(Sr) ⊂ Sr and Φ′ is continuous.

Proof. First, we prove that Φ′ maps Sr into itself. For each r > 0, assume that this is not
true, i.e., there exists r∗ ∈ Sr such that Φ′(r∗) /∈ Sr. Thus,

r < e−a
∣∣(Φ′x(a))∣∣ ≤ L′

Γ(h)
MFψ(r′)a(1−h)(1−q)

∫ a

0
(a− s)h−1ds

≤ L′

hΓ(h)
a1−q(1−h)MFψ(r′).

Dividing both sides by r and letting r → ∞, we obtain 1 < 0, which contradicts our
assumptions. Therefore, Φ′

(
Sr
)
⊂ Sr.

Next, we prove that Φ′ is continuous. Let {xm}+∞
m=0 be the sequence in Sr, which is

convergent to x ∈ Sr. Then, it holds that

lim
m→∞

xm(a) = x(a) =⇒ lim
m→∞

a(1−h)(1−q)xm(a) = a(1−h)(1−q)x(a) for a ∈ (0,+∞).

Similarly,

lim
m→∞

Fm(a, wm
a + Φ̂a

)
= F

(
a, wa + Φ̂a

)
for a ∈ (0,+∞).

From (H2), we obtain

(a− s)h−1∣∣Fm(a, wm
a + Φ̂a

)
− F

(
a, wa + Φ̂a

)∣∣ ≤ 2(a− s)h−1MFψ(r′), for all a ∈ (0, ∞).
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Also, the function s → 2(a− s)h−1MFψ(r′) is integrable for s ∈ [0, a), a ∈ [0, ∞). Using
the Lebesgue-dominated convergent theorem, we obtain∫ a

0
(a− s)h−1∣∣Fm(a, wm

a + Φ̂a

)
− F

(
a, wa + Φ̂a

)∣∣ds→ 0, m→ ∞.

Therefore,∣∣∣∣e−a(Φ′xm
)
(a)− e−a

(
Φ′x

)
(a)

∣∣∣∣
≤ a(1−h)(1−q)e−a

∫ a

0

∣∣Qh(a− s)
[
Fm(a, wm

a + Φ̂a

)
− F

(
a, wa + Φ̂a

)]∣∣ds
≤ L

Γ(h)
a(1−h)(1−q)e−a

∫ a

0

∣∣Qh(a− s)
[
Fm(a, wm

a + Φ̂a

)
− F

(
a, wa + Φ̂a

)]∣∣ds
→ 0, when m→ ∞.

Hence, Φ′ is continuous. Thus, the proof is completed.

Theorem 2. Suppose that (H1)− (H2) hold. If Φ′ satisfies Mönch′s condition, then the system
(1) has at least one mild solution.

Proof. Considering the set W =
{
k : k(a) = e−a

(
Φ′x

)
(a), x ∈ Sr

}
, we show that W is

relatively compact.
According to Lemmas 5 and 6, the set W is equicontinuous and lim

a→+∞
e−a|Φ′x(a)| = 0

uniformly for x ∈ Sr. Thus, it remains to verify that the set W is relatively compact.
Suppose that O∗1 =

{
wm
s + Φ̂s

}+∞
m=0 ⊆ Sr is countable and O∗1 ⊆ conv

(
{0} ∪ Φ′(O∗1)

)
. We

must prove that µ(O∗1) = 0, where µ is the Hausdorff measure of noncompactness. Based
on Theorem 1 and (H2), we obtain

µ
(
O∗1
)
= µ

({
wm
s + Φ̂s

}+∞
m=0

)
= µ

((
w0 + Φ̂

)
(a) ∪

{
wm
s + Φ̂s

}+∞
m=0

)
= µ

(
Φ̂(a) ∪

{
wm
s + Φ̂s

}+∞
m=0

)
,

then,

µ
(
W(a)

)
= µ

(
{e−aΦ′xm(a)}+∞

m=0
)

≤ µ

(
a(1−h)(1−q)e−a

∫ a

0
(a− s)h−1Qh(a− s)F

(
s,
{
wm
s + Φ̂

}+∞
m=0

)
ds
)

≤ L

Γ(h)
a(1−h)(1−q)e−a

∫ a

0
(a− s)h−1µ

(
F
(
a,
{
wm
s + Φ̂s

}+∞
m=0

))
ds

≤ L

Γ(h)
a(1−h)(1−q)e−a

∫ a

0
(a− s)h−1M∗F × sup

−∞<s≤0
µ

(
{wm

s + Φ̂s

}+∞
m=0

)
ds

≤ L′

hΓ(h)
a1−q(1−h)M∗F × sup

−∞<s≤0
µ

(
{wm

s + Φ̂s

}+∞
m=0

)
µ
(
W(a)

)
≤ L′

hΓ(h)
a1−q(1−h)M∗F × sup

−∞<s≤0
µ
(
O∗1
)
.

Thus, we obtain µ
(
W(a)

)
= 0, which implies that W(a) is relatively compact. Therefore,

based on Lemma 8, the set W is relatively compact. Hence, using Lemma 7, we conclude
that the fractional differential system (1) has at least one mild solution.
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3.2. Semigroup is Compact

In this part we assume that for t > 0, the semigroup T(t) is compact on X. Hence, the
compactness of Qh(a) follows.

Theorem 3. If the assumptions (H1)–(H2) are true and T(a) is compact, the system (1) has a
mild solution.

Proof. Obviously, it is sufficient to show that Φ′(x) has a fixed point in Sr. Here, we assume
that the semigroup T(a) is compact and fulfills (H1). Then, based on Lemmas 5 and 6, the
set W is equicontinuous and lim

a→∞
e−a|Φ′x(a)| = 0 uniformly for x ∈ Sr. Thus, it remains to

verify that the set W is relatively compact. To achieve this, we introduce a new operator
Φ′ε,δ, such that 0 < ε < a and δ > 0. Take Wε,δ =

{
kε,δ : kε,δ(a) = e−a

(
Φ′ε,δx

)
(a), x ∈ Sr

}
.

Then, we consider

(
Φ′ε,δx

)
(a) = a(1−h)(1−q)

∫ a−ε

0
(a− s)h−1Qh(a− s)F

(
s, ws + Φ̂s

)
ds

= a(1−h)(1−q)
( ∫ a−ε

0

∫ ∞

δ
(a− s)h−1hθT

(
εαδ
)
Wh

(
(a− s)hθ

)
dθF

(
s, ws + Φ̂s

)
ds
)

= a(1−h)(1−q)
(
T
(
εhδ
) ∫ a−ε

0

∫ ∞

δ
hθ(a− s)h−1Wh

(
(a− s)hθ

)
dθF

(
s, ws + Φ̂s

)
ds
)

.

Since, according to Lemma 4, T(a) is compact, this implies that Qh(a) is compact for a > 0.
Therefore, T

(
εαδ
)

is compact, so that Wε,δ is relatively compact. Furthermore, for x ∈ Sr,
we obtain that:∣∣∣∣e−a(Φx

)
(a)− e−a

(
Φ′ε,δx

)
(a)

∣∣∣∣
≤ a(1−h)(1−q)e

a

∣∣∣∣T(εhδ
) ∫ a

0

∫ ∞

0
hθ(a− s)h−1Wh

(
(a− s)hθ

)
dθF

(
s, ws + Φ̂s

)
ds
∣∣∣∣

+ a(1−h)(1−q)
∣∣∣∣T(εhδ

) ∫ a

a−ε

∫ ∞

δ
hθ(a− s)h−1Wh

(
(a− s)hθ

)
dθF

(
s, ws + Φ̂s

)
ds
∣∣∣∣

≤ a(1−h)(1−q)Lhe−a
[ ∫ a

0
(a− s)h−1MF(a)ψ(r

′)ds
∫ δ

0
θWh

(
(a− s)hθ

)
dθ

+
∫ a

a−ε
(a− s)h−1MF(a)ψ(r

′)ds
∫ δ

0
θWh

(
(a− s)hθ

)
dθ

]
,

=⇒
∣∣∣∣e−a(Φx

)
(a)− e−a

(
Φ′ε,δx

)
(a)

∣∣∣∣→ 0 when ε, δ→ 0.

Therefore, the set W is relatively compact in Y. Thus, using the Schauder fixed-point
theorem, we prove that Φ′ has a fixed point, so the system (1) has a mild solution. This
completes the proof.

4. Application

Let us consider the following HFDtial system with infinite delay on an infinite interval:
H Dh,q

0+
(
Z(a, τ)

)
= ∂2

∂τ2

(
Z(a, τ)

)
+
∫ a
−∞ F∗

(
a, τ, s− a

)
H
(
Z(s, d)

)
ds, d ∈ [0, π], a > 0,

Z(a, 0) = Z(a, π) = 0, a ≥ 0,
Z(a, τ) = φ(a, τ), a ∈ (−∞, 0], τ ∈ [0, π].

(6)

Let us take Y = L2([0, π],R
)

to satisfy the norm | · | and A : Y → Y defined by Au = u′′,
such that the domain

D(A) = {u ∈ Y : u, u′ are absolutely continuous, u′′ ∈ Y, u(0) = u(π) = 0}



Fractal Fract. 2023, 7, 724 10 of 12

contains the orthogonal set of eigenvectors uk of A and

Au =
∞

∑
k=1

k2〈u, uk〉uk, u ∈ D(A),

where uk(s) =
√

2/π sin ks, k = 1, 2, · · · . Then, A generates a compact, analytic, self-adjoint
semigroup {T(a), a > 0}; that is, T(a)u = ∑∞

k=1 e−k2a〈u, uk〉uk, u ∈ Y. Therefore, there is a
constant L > 0, such that ‖T(a)‖ ≤ L.

Let λ(s) = e2s, s < 0, then Λ =
∫ 0
−∞ λ(s)ds = 1

2 and define

∥∥φ
∥∥

Ω =
∫ 0

−∞
λ(s) sup

s≤θ≤0

∣∣φ(θ)∣∣L2 ds.

Let us take

Z(a)(τ) = Z(a, τ), a ∈ [0, ∞),

φ(θ)(τ) = φ(θ, τ), (θ, τ) ∈ (−∞, 0]× [0, π],

F
(
a, xa

)
=
∫ a

−∞
F∗
(
a, τ, s− a

)
H
(
Z(s)(τ)

)
ds.

Thus, the Equation (6) is represented in the abstract form of the Equation (1). Furthermore,
the system satisfies the following:

1. F∗(a, τ, θ) is continuous in [0, ∞)× [0, π]× (−∞, 0] and F∗ ≥ 0,
∫ 0
−∞ F∗(a, τ, θ)dθ =

M1(a, d) < +∞.
2. H(·) is continuous and for (θ, τ) ∈ (−∞, 0]× [0, π] it holds that 0 ≤ H

(
Z(θ)(d)

)
≤

Ξ
( ∫ 0
−∞ e2s‖Z(s, ·)‖L2 ds

)
, where Ξ : [0,+∞) → (0,+∞) is a continuous increasing

function.

We verify the following:

∣∣F(a, φ)
∣∣
L2 =

[ ∫ π

0

( ∫ 0

−∞
F∗
(
a, τ, s− a

)
H
(
Z(s)(τ)

)
dθ

)2

dτ

] 1
2

≤
[ ∫ π

0

( ∫ 0

−∞
F∗
(
a, τ, s− a

)
Ξ
( ∫ 0

−∞
e2s‖φ(s, ·)‖L2 ds

)
dθ

)2

dτ

] 1
2

≤
[ ∫ π

0

( ∫ 0

−∞
F∗
(
a, τ, s− a

)
Ξ
( ∫ 0

−∞
e2s sup

θ≤s≤0
‖φ(s, ·)‖L2 ds

)
dθ

)2

dτ

] 1
2

≤
[ ∫ π

0

( ∫ 0

−∞
F∗
(
a, τ, s− a

)
dθ

)2

dd
] 1

2

Ξ
(
‖φ‖Ω

)
≤
[ ∫ π

0

(
M1(a, τ)

)2dτ

] 1
2

Ξ
(
‖φ‖Ω

)
≡ M∗(a)Ξ

(
‖φ‖Ω

)
,
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such that lim
n→∞

Ξ(n)
n = 0. Furthermore, we can write

µ
(

F(a, xa)
)
= µ

( ∫ a

−∞
F∗
(
a, d, s− a

)
H(Z(s)(τ))ds

)
≤ µ

( ∫ 0

−∞
F∗
(
a, τ, s− a

)
Ξ
( ∫ 0

−∞
e2s‖φ(s, ·)‖L2 ds

)
dτ

)
≤ µ

( ∫ 0

−∞
F∗
(
a, τ, s− a

)
Ξ
( ∫ 0

−∞
e2s sup

θ≤s≤0
‖φ(s, ·)‖L2 ds

)
dτ

)
≤ M∗∗(a) sup

−∞<φ≤0
µ
(
O∗∗1 (φ)

)
, where O∗∗1 is the subset of Sr.

Therefore, (H2) is satisfied, proving that the system (1) has a mild solution on the infinite
interval (0,+∞).

5. Conclusions

In this work, we studied the existence of a mild solution to the Hilfer fractional
differential system on an infinite interval via the generalized Ascoli–Arzelà theorem and
fixed-point method. First, we proved the existence of a mild solution to an infinite delay sys-
tem using the measure of noncompactness; after that, we established the compactness of the
semigroup via the Schauder fixed-point technique; and finally, an example was provided.
In the future, we will study the controllability of a Hilfer fractional differential system on
an infinite interval via the generalized Ascoli–Arzelà theorem and fixed-point approach.
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