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Abstract

We apply the general extension-principle-based approach to make predictions based on a regression model in a full interval-
valued fuzzy environment. We use triangular interval-valued fuzzy numbers that model the uncertainty of the observed inputs
and outputs to derive the predicted outputs in full accordance with Zadeh’s extension principle. On one side, we enhance the
Monte Carlo based algorithm introduced in the literature for simulating the output predictions of a fuzzy regression model by
reducing the universe of random selections still keeping the accuracy of the empirical results; and on the other side, we solve
quadratic models to derive the left endpoints of the ↵−cut intervals of the exact results. We use one real-life problem from
hydrology engineering with data recalled from the literature to carry out numerical experiments and illustrate our proposed
methodology.
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1. Introduction

Fuzzy regression is widely studied nowadays. We refer the reader to [1], [2] and [3] for finding out the most
recent ideas on fuzzy regression approaches. A systematic review is presented in [4].

This research is a continuation of the results published in [5], where a general approach in full accordance with
the extension principle was proposed to a regression model with fuzzy-numbered observed data. Our first goal is
to extend the approach to the full interval-valued fuzzy environment. The new proposed extension is described in
Section 3.1.

Monte Carlo simulation algorithms were proposed in the literature in order to handle the complex fuzzy opti-
mization problems. For instance, the approaches introduced in [3] and [7] to fuzzy regression analysis simulated
the Zadeh’s extension principle [6], and derived conformed empiric solutions. The importance of finding results
in full compliance to the extension principle to fuzzy optimization problems was emphasized in [8].

Our next goal is to enhance the existing Monte Carlo simulation algorithm for fuzzy optimization by reducing
the universe of random selections still keeping the accuracy of the empirical results. The new Monte Carlo based
algorithm is described in Section 3.2.
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Within our experiments, we recall a real-life example from the literature. In Section 4 we report the numerical
results derived by our new approach; and analyze them in comparison to the results reported in [9] and [10].

2. Notation and terminology

Type-2 fuzzy numbers were introduced in [6] as generalization to fuzzy numbers to enable the modeling of
a higher level of uncertainty. A particular case of type-2 fuzzy numbers are the triangular interval-valued fuzzy
numbers (TIVFNs) that can be represented by a quintuple
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Generally, the membership function of a type-2 fuzzy set is defined with the help of a type-1 fuzzy set.
Particularly, the membership degree of a value v in the TIVFN

h⇣
x

U

L
, xL

L

⌘
, x,
⇣
x

L

R
, xU

R

⌘i
is defined by an interval⇥

µL (v) , µU (v)
⇤
, where µL (v) is the membership degree of v in the triangular fuzzy number represented by the

triple
⇣
x

L

L
, x, xL

R

⌘
, and µU (v) is the membership degree of v in the triangular fuzzy number represented by the triple⇣

x
U

L
, x, xU

R

⌘
. The arithmetic operators on TIVFNs are defined with respect to the min operator applied separately

to the lower and upper membership functions of the involved numbers.
Briefly, through a regression analysis a prediction function able to describe a general relation between inputs

and outputs based on the observed inputs and outputs, is provided. In Section 3, X denotes the matrix of dimension
n ⇥ (p + 1) which contains p observed values of n inputs, and is bordered in front by a column of 1s; while the
column matrix Y of dimension n contains the values describing the corresponding n observed outputs. Formula
X

T
XA = X

T
Y defines the column matrix A that contains the p+1 coefficients ap, . . . , a0 of the prediction function

derived by the least squared linear regression model.
The fuzzy regression models use the observed fuzzy inputs and outputs exi j and eyi, i = 1, . . . , n, j = 1, . . . , p,

respectively. In the context of this paper, the fuzzy quantities are TIVFNs, and their components are used within
Models (1) and (2).

For the detailed terminology related to least squared fuzzy regression we refer the reader to [5].

3. Theoretical results

In this section we propose two modifications to the existing methods from the literature, aiming to provide im-
proved solutions to regression optimization problems. Firstly, we adjust the Extention-principle-based regression
optimization process EPBRO proposed in [5] to work in full interval-valued fuzzy environment, and present the
new formulation in Section 3.1. Secondly, we enhance the Monte Carlo simulation algorithm [3] by reducing the
universe of random selections, and present the new algorithm in Section 3.2.

3.1. Extended EPBRO method

In this section we aim to adjust the Extention-principle-based regression optimization process EPBRO [5]
to work in full interval-valued fuzzy environment. Interpreting an TIVFN XTIVFN =
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where ↵ is fixed andev is the analyzed fuzzy input. The optimization is made with respect to the variables v, a0,
a j, xi j and yi, i = 1, . . . , n, j = 1, . . . , p. The objective function of Model (1) is minimized (maximized) to derive
the left (right) side of the membership function of the estimated fuzzy output.
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For proving the inequalities included in Statement (ii) we propose Model (2) that optimizes the membership
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Models (1) and (2) provide di↵erent perspectives on the same interval-valued fuzzy number that is the predic-
tion of the regression model at inputev.

3.2. Enhanced Monte Carlo simulation algorithm

Any simulation provided by a Monte Carlo method is based on random selections of relevant values from their
corresponding universes. The Monte Carlo simulation algorithm proposed for deriving extension-principle-based
empiric solutions to fuzzy regression [3] selected random values form the ↵−cut intervals of the involved fuzzy
quantities.

To downsize the selection spaces we randomly select either the left or right endpoint of each ↵−cut interval.
In this way, the simulation faster provides a better spread of the relevant results.

Many fuzzy optimization problems were solved in the literature by using only the left (right) endpoints of the
↵−cut intervals of all fuzzy coefficients in deriving the left (right) side of the membership function of the fuzzy
solution. However, our experiments showed that such approaches yield improper fuzzy solutions.

4. Computation results

Within our experiments we use the real-life example from hydrology engineering described in [9] and recalled
in [10]. The example consists of n = 51 observed pairs of inputs X
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Within our experiments, we recall a real-life example from the literature. In Section 4 we report the numerical
results derived by our new approach; and analyze them in comparison to the results reported in [9] and [10].

2. Notation and terminology

Type-2 fuzzy numbers were introduced in [6] as generalization to fuzzy numbers to enable the modeling of
a higher level of uncertainty. A particular case of type-2 fuzzy numbers are the triangular interval-valued fuzzy
numbers (TIVFNs) that can be represented by a quintuple
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Generally, the membership function of a type-2 fuzzy set is defined with the help of a type-1 fuzzy set.
Particularly, the membership degree of a value v in the TIVFN
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. The arithmetic operators on TIVFNs are defined with respect to the min operator applied separately

to the lower and upper membership functions of the involved numbers.
Briefly, through a regression analysis a prediction function able to describe a general relation between inputs

and outputs based on the observed inputs and outputs, is provided. In Section 3, X denotes the matrix of dimension
n ⇥ (p + 1) which contains p observed values of n inputs, and is bordered in front by a column of 1s; while the
column matrix Y of dimension n contains the values describing the corresponding n observed outputs. Formula
X

T
XA = X

T
Y defines the column matrix A that contains the p+1 coefficients ap, . . . , a0 of the prediction function

derived by the least squared linear regression model.
The fuzzy regression models use the observed fuzzy inputs and outputs exi j and eyi, i = 1, . . . , n, j = 1, . . . , p,

respectively. In the context of this paper, the fuzzy quantities are TIVFNs, and their components are used within
Models (1) and (2).

For the detailed terminology related to least squared fuzzy regression we refer the reader to [5].

3. Theoretical results

In this section we propose two modifications to the existing methods from the literature, aiming to provide im-
proved solutions to regression optimization problems. Firstly, we adjust the Extention-principle-based regression
optimization process EPBRO proposed in [5] to work in full interval-valued fuzzy environment, and present the
new formulation in Section 3.1. Secondly, we enhance the Monte Carlo simulation algorithm [3] by reducing the
universe of random selections, and present the new algorithm in Section 3.2.

3.1. Extended EPBRO method

In this section we aim to adjust the Extention-principle-based regression optimization process EPBRO [5]
to work in full interval-valued fuzzy environment. Interpreting an TIVFN XTIVFN =
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where ↵ is fixed andev is the analyzed fuzzy input. The optimization is made with respect to the variables v, a0,
a j, xi j and yi, i = 1, . . . , n, j = 1, . . . , p. The objective function of Model (1) is minimized (maximized) to derive
the left (right) side of the membership function of the estimated fuzzy output.
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For proving the inequalities included in Statement (ii) we propose Model (2) that optimizes the membership

degree ↵ with respect to the fixed real value y
⇤ and the variables ↵, v, a0, a j, xi j and yi, i = 1, . . . , n, j = 1, . . . , p.
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Let µL (y⇤) and µU (y⇤) denote the optimal values obtained by solving (2) for the lower and upper descriptions of
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Models (1) and (2) provide di↵erent perspectives on the same interval-valued fuzzy number that is the predic-
tion of the regression model at inputev.

3.2. Enhanced Monte Carlo simulation algorithm

Any simulation provided by a Monte Carlo method is based on random selections of relevant values from their
corresponding universes. The Monte Carlo simulation algorithm proposed for deriving extension-principle-based
empiric solutions to fuzzy regression [3] selected random values form the ↵−cut intervals of the involved fuzzy
quantities.

To downsize the selection spaces we randomly select either the left or right endpoint of each ↵−cut interval.
In this way, the simulation faster provides a better spread of the relevant results.

Many fuzzy optimization problems were solved in the literature by using only the left (right) endpoints of the
↵−cut intervals of all fuzzy coefficients in deriving the left (right) side of the membership function of the fuzzy
solution. However, our experiments showed that such approaches yield improper fuzzy solutions.

4. Computation results

Within our experiments we use the real-life example from hydrology engineering described in [9] and recalled
in [10]. The example consists of n = 51 observed pairs of inputs X
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Fig. 1. Comparative analysis of the results derived by our enhanced Monte Carlo simulation algorithm on one side and the results reported in
[9] and [10] on the other side, all for input X

23
TIVFN

The estimated outputs of the methodology proposed in [9] can be computed using the regression function

[(2.34, 3.96) , 5.54, (7.79, 9.04)]+([(0.034, 0.034) , 0.216, (0.216, 0.216)] + [(−0.004,−0.004) , 0, (0, 0)])⇥XTIVFN.

The results reported in [10] can be computed using the regression function

[(2.28, 3.98) , 5.54, (7.70, 9.11)] + [(0.01, 0.01) , 0.216, (0.216, 0.216)] ⇥ XTIVFN.

Our empirical results can be derived using the enhanced Monte Carlo simulation method. A graphic repre-
sentation of the estimated outputs obtained for the observed input X

23
TIVFN are shown in Figure 1. We named

“Low - Up” the approach that derives the solutions using the left endpoints of the ↵−cut intervals for all fuzzy
coefficients; and separately, the right endpoints of the ↵−cut intervals for all fuzzy coefficients. Both simulations
were performed twice, for deriving the inside and outside descriptions of the TIVFN solutions, respectively.

There are several conclusions that can be made based on the representation given in Figure 1:

• both representations of [9] and [10] are very similar; there are no relevant di↵erences between them;
• the estimations made by using the “Low - Up” approach are very close to the results derived in the literature.

However, they do not describe estimated outputs that comply to the extension principle, since there are
Monte Carlo simulated smaller/greater values with the same membership degree (note, for instance, the
representation for ↵ = 0.4 and ↵ = 0.8);
• the enhanced Monte Carlo simulation (named “MC” in Figure 1) shows that there exist relevant values of

the outputey23 which do not fit between the borders provided in [9] and [10] (not all red circles are within
the borders of the inside triangle; and not all black squares are within the borders of the outside triangle).

Figure 2 shows the left sides of both inside and outside membership functions of the exact TIVFN representing
the estimated output derived for input X

1
TIVFN using the extended EPBRO algorithm and the algorithms described

in [9] and [10]. The estimation provided by our approach is wider than those provided in the literature but more
relevant for a regression analysis fully complying to the extension principle. The left sides of the extended EPBRO
were derived using Model (1), while the right ones were derived using Model (2).

5. Conclusions and further researches

In this paper we explained how to apply the general extension-principle-based approach in order to make
predictions based on a regression model in a full interval-valued fuzzy environment. We used triangular interval-

B. Stanojević, M. Stanojević / Procedia Computer Science 00 (2023) 000–000

Fig. 2. Comparative analysis of the results derived by the extended EPBRO algorithm on one side and the results reported in [9] and [10] on
the other side, all for input X

1
TIVFN

valued fuzzy numbers that modeled the uncertainty of the observed inputs and outputs; and derived the predicted
outputs in full accordance with Zadeh’s extension principle.

On one side, we enhanced the Monte Carlo based algorithm introduced in the literature for simulating the
output predictions of a fuzzy regression model by reducing the universe of random selections still keeping the
accuracy of the empirical results; and on the other side, we solved quadratic models to derive the left endpoints of
the ↵−cut intervals of the exact results.

We used one real-life problem from hydrology engineering with data recalled from the literature to carry out
numerical experiments and illustrate our proposed methodology.

Further researches on this theme might be fruitful using more general regression functions, aggregating op-
erators and/or other types of fuzzy numbers in modeling the uncertain data. Employing heuristics to solve more
complex optimization models is also desirable.
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[3] B. Stanojević, M. Stanojević, Extension-principle-based approach to least square fuzzy linear regression, in: S. Dzitac, D. Dzitac, F. G.
Filip, J. Kacprzyk, M.-J. Manolescu, H. Oros (Eds.), Intelligent Methods Systems and Applications in Computing, Communications and
Control, Springer International Publishing, Cham, 2023, pp. 219–228.

[4] N. Chukhrova, A. Johannssen, Fuzzy regression analysis: Systematic review and bibliography, Applied Soft Computing 84 (2019)
105708. doi:https://doi.org/10.1016/j.asoc.2019.105708.
URL https://www.sciencedirect.com/science/article/pii/S1568494619304892
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valued fuzzy numbers that modeled the uncertainty of the observed inputs and outputs; and derived the predicted
outputs in full accordance with Zadeh’s extension principle.

On one side, we enhanced the Monte Carlo based algorithm introduced in the literature for simulating the
output predictions of a fuzzy regression model by reducing the universe of random selections still keeping the
accuracy of the empirical results; and on the other side, we solved quadratic models to derive the left endpoints of
the ↵−cut intervals of the exact results.

We used one real-life problem from hydrology engineering with data recalled from the literature to carry out
numerical experiments and illustrate our proposed methodology.

Further researches on this theme might be fruitful using more general regression functions, aggregating op-
erators and/or other types of fuzzy numbers in modeling the uncertain data. Employing heuristics to solve more
complex optimization models is also desirable.
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