Norms of a Product of Integral and Composition Operators between Some Bloch-Type Spaces

Stevo Stević ${ }^{1,2}$

Citation: Stević, S. Norms of a
Product of Integral and Composition Operators between Some Bloch-Type Spaces. Axioms 2023, 12, 491. https:// doi.org/10.3390/axioms12050491

Academic Editors: Hadi Roopaei and Feyzi Başar

Received: 13 April 2023
Revised: 13 May 2023
Accepted: 16 May 2023
Published: 18 May 2023

Copyright: © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1 Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia; sscite1@gmail.com or sstevic@ptt.rs
2 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

Abstract: We present some formulas for the norm, as well as the essential norm, of a product of composition and an integral operator between some Bloch-type spaces of analytic functions on the unit ball, in terms of given symbols and weights.

Keywords: operator norm; essential norm; composition operator; integral operator; Bloch-type space
MSC: 47B38

1. Introduction

Let \mathbb{B} be the open unit ball in \mathbb{C}^{n}, with the scalar product $\langle z, w\rangle=\sum_{k=1}^{n} z_{k} \bar{w}_{k}$ and the norm $|z|=\sqrt{\langle z, z\rangle}$ (here, as usual, $z=\left(z_{1}, \ldots, z_{n}\right)$, $w=\left(w_{1}, \ldots, w_{n}\right)$, and $\bar{z}=\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right)$). We denote the space of analytic functions on \mathbb{B} by $H(\mathbb{B})$, whereas we denote the class of analytic self-maps of \mathbb{B} by $S(\mathbb{B})[1,2]$. The linear operator $\Re f(z)=\sum_{j=1}^{n} z_{j} D_{j} f(z)$, where $D_{j} f=\frac{\partial f}{\partial z_{j}}, j=\overline{1, n}$, is called a radial derivative.

We denote the set of all positive and continuous functions on \mathbb{B} by $W(\mathbb{B})$. A $w \in W(\mathbb{B})$ is called a weight. Let $\mu \in W(\mathbb{B})$. Then,

$$
H_{\mu}^{\infty}(\mathbb{B})=\left\{f \in H(\mathbb{B}):\|f\|_{H_{\mu}^{\infty}}:=\sup _{z \in \mathbb{B}} \mu(z)|f(z)|<+\infty\right\}
$$

is called a weighted-type space. This space with the norm $\|\cdot\|_{H_{\mu}^{\infty}}$ is a Banach space. A little weighted-type space consists of $f \in H_{\mu}^{\infty}(\mathbb{B})$ such that $\lim _{|z| \rightarrow 1} \mu(z)|f(z)|=0$. These spaces have been studied for a long time (see, e.g., [3-9]), as well as the operators acting on them (see, e.g., [10-17] and the references therein). If μ is a nonzero constant, we obtain the space $H^{\infty}(\mathbb{B})$ with the norm $\|f\|_{\infty}=\sup _{z \in \mathbb{B}}|f(z)|$ (bounded analytic functions).

Let $\mu \in W(\mathbb{B})$. Then, the space

$$
\mathcal{B}_{\mu}(\mathbb{B})=\left\{f \in H(\mathbb{B}): b_{\mu}(f):=\sup _{z \in \mathbb{B}} \mu(z)|\Re f(z)|<+\infty\right\}
$$

is called a Bloch-type space. With the norm $\|f\|_{\mathcal{B}_{\mu}}=|f(0)|+b_{\mu}(f)$, it is a Banach space. A little Bloch-type space consists of $f \in \mathcal{B}_{\mu}(\mathbb{B})$ such that $\lim _{|z| \rightarrow 1} \mu(z)|\Re f(z)|=0$. We obtain the Bloch space \mathcal{B} and little Bloch space \mathcal{B}_{0} for $\mu(z)=1-|z|^{2}$, whereas for $\mu(z)=$ $\left(1-|z|^{2}\right)^{\alpha}, \alpha>0$, we obtain the α-Bloch space \mathcal{B}^{α} and the little α-Bloch space \mathcal{B}_{0}^{α}. For

$$
\mu(z)=\mu_{\log _{k}}(z)=\left(1-|z|^{2}\right) \prod_{j=1}^{k} \ln ^{[j]} \frac{e^{[k]}}{1-|z|^{2}}
$$

where $k \in \mathbb{N}, e^{[1]}=e, e^{[l]}=e^{e^{[l-1]}}, l \in \mathbb{N} \backslash\{1\}$ and

$$
\ln ^{[j]} z=\underbrace{\ln \cdots \ln }_{j \text { times }} z,
$$

we obtain the iterated logarithmic Bloch space $\mathcal{B}_{\log _{k}}(\mathbb{B})=\mathcal{B}_{\log _{k}}$, which for $k=1$, reduces to $\mathcal{B}_{\log _{1}}=\mathcal{B}_{\text {log }}$. The quantity

$$
\begin{equation*}
\|f\|_{\mathcal{B}_{\log _{k}}^{\prime}}=|f(0)|+\sup _{z \in \mathbb{B}} \mu_{\log _{k}}(z)|\nabla f(z)|, \tag{1}
\end{equation*}
$$

is a norm on $\mathcal{B}_{\log _{k}}(\mathbb{B})$. From $|\Re f(z)| \leq|\nabla f(z)|$ and a known theorem ([18-20]), it follows that (1) is equivalent to the norm $\|f\|_{\mathcal{B}_{\log _{k}}}=|f(0)|+\sup _{z \in \mathbb{B}} \mu_{\log _{k}}(z)|\Re f(z)|$ on $\mathcal{B}_{\log _{k}}$.

Suppose $a \in\left[e^{[k]},+\infty\right)$. Then, for every $z \in \mathbb{B}$, we have

$$
\begin{align*}
& (1-|z|) \prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-|z|}=(1-|z|) \prod_{j=1}^{k} \ln ^{[j]} e^{[k]} \frac{a(1+|z|)}{e^{[k]}\left(1-|z|^{2}\right)} \\
& \leq\left(1-|z|^{2}\right) \prod_{j=1}^{k} \ln { }^{[j]}\left(\frac{2 a}{e^{[k]}} \frac{e^{[k]}}{1-|z|^{2}}\right)=\left(1-|z|^{2}\right) \prod_{j=1}^{k} \ln { }^{[j-1]}\left(\ln \frac{e^{[k]}}{1-|z|^{2}}+\ln \frac{2 a}{e^{[k]}}\right) \\
& \leq\left(1-|z|^{2}\right) \prod_{j=1}^{k} \ln ^{[j-1]}\left(\left(1+\ln \frac{2 a}{e^{[k]}}\right) \ln \frac{e^{[k]}}{1-|z|^{2}}\right) \\
& =\left(1-|z|^{2}\right)\left(1+\ln \frac{2 a}{e^{[k]}}\right) \ln \frac{e^{[k]}}{1-|z|^{2}} \prod_{j=2}^{k} \ln n^{[j-2]}\left(\ln \left(1+\ln \frac{2 a}{e^{[k]}}\right)+\ln ^{[2]} \frac{e^{[k]}}{1-|z|^{2}}\right) \\
& \leq\left(1-|z|^{2}\right)\left(1+\ln \frac{2 a}{e^{[k]}}\right) \ln \frac{e^{[k]}}{1-|z|^{2}} \prod_{j=2}^{k} \ln ^{[j-2]}\left(\left(1+\ln \left(1+\ln \frac{2 a}{e^{[k]}}\right)\right) \ln { }^{[2]} \frac{e^{[k]}}{1-|z|^{2}}\right) \\
& =\left(1-|z|^{2}\right)\left(1+\ln \frac{2 a}{e^{[k]}}\right) \ln \frac{e^{[k]}}{1-|z|^{2}}\left(1+\ln \left(1+\ln \frac{2 a}{e^{[k]}}\right)\right) \ln { }^{[2]} \frac{e^{[k]}}{1-|z|^{2}} \\
& \times \prod_{j=3}^{k} \ln ^{[j-2]}\left(\left(1+\ln \left(1+\ln \frac{2 a}{e^{[k]}}\right)\right) \ln ^{[2]} \frac{e^{[k]}}{1-|z|^{2}}\right) \\
& \leq\left(1-|z|^{2}\right)\left(1+\ln \frac{2 a}{e^{[k]}}\right) \ln \frac{e^{[k]}}{1-|z|^{2}}\left(1+\ln \left(1+\ln \frac{2 a}{e^{[k]}}\right)\right) \ln { }^{[2]} \frac{e^{[k]}}{1-|z|^{2}} \\
& \cdots\left(1+\ln \left(1+\cdots+\ln \left(1+\ln \left(1+\ln \frac{2 a}{e^{[k]}}\right)\right) \cdots\right)\right) \ln ^{[k]} \frac{e^{[k]}}{1-|z|^{2}} \\
& =c_{a}\left(1-|z|^{2}\right) \prod_{j=1}^{k} \ln { }^{[j]} \frac{e^{[k]}}{1-|z|^{2}} \\
& \leq 2 c_{a}(1-|z|) \prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-|z|} . \tag{2}
\end{align*}
$$

The consideration leading to (2) implies that, for $a \in\left[e^{[k]},+\infty\right)$, the quantity

$$
\begin{equation*}
\|f\|_{\mathcal{B}_{\log _{k}}^{(a)}}^{(a)}=|f(0)|+b_{\log _{k}}^{(a)}(f):=|f(0)|+\sup _{z \in \mathbb{B}}(1-|z|)\left(\prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-|z|}\right)|\nabla f(z)| \tag{3}
\end{equation*}
$$

presents another equivalent norm on $\mathcal{B}_{\log _{k}}$.

We define the corresponding little iterated logarithmic Bloch space $\mathcal{B}_{\log _{k}, 0}(\mathbb{B})=\mathcal{B}_{\log _{k}, 0}$ as the set of all $f \in H(\mathbb{B})$ such that

$$
\lim _{|z| \rightarrow 1}(1-|z|)\left(\prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-|z|}\right)|\nabla f(z)|=0 .
$$

For some facts on logarithmic-type spaces, see, e.g., [10,14,21-23].
The product of the composition operator $C_{\varphi} f(z)=f(\varphi(z))$ and an equivalent form of the integral operator in [24,25]

$$
\begin{equation*}
P_{\varphi}^{g}(f)(z)=\int_{0}^{1} f(\varphi(t z)) g(t z) \frac{d t}{t}, \quad z \in \mathbb{B} \tag{4}
\end{equation*}
$$

where $g \in H(\mathbb{B}), g(0)=0$ and $\varphi \in S(\mathbb{B})$, was studied, e.g., in [22,26]. The introduction of the operators in $[24,25]$ was motivated by some special cases mentioned therein (see also [27]). Many facts about this topic can be found in [28]. Operator (4), as well as some related ones, has been considerably studied (see, e.g., [29-34] and the cited references therein). Beside this product-type operator, many others have been studied during the last two decades. One can consult the following references: [10,14,15,35,36].

The essential norm of a linear operator $L: X \rightarrow Y$, where X and Y are Banach spaces and $\|\cdot\|_{X \rightarrow Y}$ denotes the operator norm, is the quantity

$$
\|L\|_{e, X \rightarrow Y}=\inf \left\{\|L+K\|_{X \rightarrow Y}: K: X \rightarrow Y, K \text { is compact }\right\} .
$$

One of the most popular topics in studying concrete linear operators is characterization of their operator-theoretic properties in terms of the induced symbols. One of the basic problems is the calculation of their norms and essential norms [18-20,37-39]. Some recent formulas for the norms can be found in [11-14,23,26,31].

Let $M_{u}(f)(z)=u(z) f(z)$, where $u \in H(\mathbb{B})$. The following result was proved in [11].

Theorem 1. Let $u \in H(\mathbb{B}), \varphi \in S(\mathbb{B}), \mu \in W(\mathbb{B})$ and $M_{u} C_{\varphi}: X \rightarrow H_{\mu}^{\infty}$ be bounded, where $X \in\left\{\mathcal{B}, \mathcal{B}_{0}\right)$. Then,

$$
\begin{equation*}
\left\|M_{u} C_{\varphi}\right\|_{X \rightarrow H_{\mu}^{\infty}}=\max \left\{\|u\|_{H_{\mu}^{\infty}}, \frac{1}{2} \sup _{z \in B} \mu(z)|u(z)| \ln \frac{1+|\varphi(z)|}{1-|\varphi(z)|}\right\} \tag{5}
\end{equation*}
$$

where the norm on \mathcal{B} is given by $\|f\|_{\mathcal{B}}=|f(0)|+\sup _{z \in \mathbb{B}}\left(1-|z|^{2}\right)|\nabla f(z)|$.
One can try to calculate the norm of $M_{u} C_{\varphi}: \mathcal{B}^{\alpha} \rightarrow H_{\mu}^{\infty}$. To solve it, in [13], we had to change the weight $\left(1-|z|^{2}\right)^{\alpha}$. The method also works in some other situations [23]. Here, we employ this idea to calculate the norm of $P_{\varphi}^{g}: \mathcal{B}_{\log _{k}}\left(\right.$ or $\left.\mathcal{B}_{\log _{k}, 0}\right) \rightarrow \mathcal{B}_{\mu}\left(\right.$ or $\left.\mathcal{B}_{\mu, 0}\right)$. Beside this, we present a formula for its essential norm, extending the results in [23]. We use some of the methods and ideas in [13,14,23,26].

2. Auxiliary Results

Our first auxiliary result is a nontrivial technical lemma.
Lemma 1. Assume that $k \in \mathbb{N}, a \in\left[e^{[k]},+\infty\right)$. Then,

$$
\begin{equation*}
h_{k}(x)=x \prod_{j=1}^{k} \ln ^{[j]} \frac{a}{x}, \tag{6}
\end{equation*}
$$

is a nonnegative and increasing function on $\left(0, \frac{a}{e^{k]}}\right]$.

Proof. The case $k=1$ is simple [23]. So, assume $k \in \mathbb{N} \backslash\{1\}$. We have

$$
\begin{equation*}
h_{k}(x)=h_{k-1}(x) \ln ^{[k]}\left(\frac{a}{x}\right) \tag{7}
\end{equation*}
$$

From (7), it follows that

$$
\begin{equation*}
h_{k}^{\prime}(x)=h_{k-1}^{\prime}(x) \ln ^{[k]}\left(\frac{a}{x}\right)-1 \tag{8}
\end{equation*}
$$

The recursive relation in (8) implies

$$
\begin{equation*}
h_{k}^{\prime}(x)=\left(\left(\cdots\left(\left(\ln \left(\frac{a}{x}\right)-1\right) \ln ^{[2]}\left(\frac{a}{x}\right)-1\right) \cdots\right) \ln ^{[k-1]}\left(\frac{a}{x}\right)-1\right) \cdot \ln ^{[k]}\left(\frac{a}{x}\right)-1 . \tag{9}
\end{equation*}
$$

From (9), it follows that $h_{k}^{\prime}(x)$ is decreasing on the interval $\left(0, \frac{a}{e^{[k-1]}}\right)$ (here, we regard that $e^{[0]}=1$). Hence,

$$
\begin{aligned}
h_{k}^{\prime}(x) & \geq h_{k}^{\prime}\left(\frac{a}{e^{[k]}}\right) \\
& =\left(\left(\cdots\left(\left(\ln e^{[k]}-1\right) \ln ^{[2]} e^{[k]}-1\right) \cdots\right) \ln ^{[k-1]} e^{[k]}-1\right) \cdot \ln ^{[k]} e^{[k]}-1 \\
& =\left(\left(\cdots\left(\left(e^{[k-1]}-1\right) e^{[k-2]}-1\right) \cdots\right) e^{[1]}-1\right)-1>0,
\end{aligned}
$$

for $x \in\left(0, \frac{a}{e^{k]}}\right]$, from which the lemma follows.
Now, we present some point evaluation estimates for the functions in $\mathcal{B}_{\log _{k}}(\mathbb{B})$.

Lemma 2. Assume that $k \in \mathbb{N}, a \in\left[e^{[k]},+\infty\right), f \in \mathcal{B}_{\log _{k}}(\mathbb{B}), z \in \mathbb{B}$, and $r \in[0,1)$. Then,

$$
\begin{equation*}
|f(z)-f(r z)| \leq b_{\log _{k}}^{(a)}(f)\left(\ln ^{[k+1]} \frac{a}{1-|z|}-\ln ^{[k+1]} \frac{a}{1-r|z|}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq\|f\|_{\mathcal{B}_{\log _{k}}}^{(a)} \max \left\{1, \ln ^{[k+1]} \frac{a}{1-|z|}-\ln ^{[k+1]} a\right\} \tag{11}
\end{equation*}
$$

Proof. Let $\nabla f=\left(D_{1} f, \ldots, D_{n} f\right)$. Then,

$$
\begin{align*}
|f(z)-f(r z)| & =\left|\int_{r}^{1}\langle\nabla f(t z), \bar{z}\rangle d t\right| \\
& \leq b_{\log _{k}}^{(a)}(f) \int_{r}^{1} \frac{|z| d t}{(1-|z| t) \prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-|z| t}} \\
& =b_{\log _{k}}^{(a)}(f)\left(\ln ^{[k+1]} \frac{a}{1-|z|}-\ln ^{[k+1]} \frac{a}{1-r|z|}\right) . \tag{12}
\end{align*}
$$

From (12), for $r=0$, it follows that

$$
\begin{equation*}
|f(z)-f(0)| \leq b_{\log _{k}}^{(a)}(f)\left(\ln ^{[k+1]} \frac{a}{1-|z|}-\ln ^{[k+1]} a\right) \tag{13}
\end{equation*}
$$

Relation (13), along with the definition of $\|\cdot\|_{\mathcal{B}_{\log _{k}}}^{(a)}$ and the triangle inequality for numbers, implies (11).

For the next lemma, see [22].

Lemma 3. Let $f, g \in H(\mathbb{B})$ and $g(0)=0$. Then,

$$
\begin{equation*}
\Re P_{\varphi}^{g}(f)(z)=f(\varphi(z)) g(z), \quad z \in \mathbb{B} \tag{14}
\end{equation*}
$$

The following result is closely related to the corresponding one in [40], because of which the proof is omitted.

Lemma 4. Assume that $g \in H(\mathbb{B}), g(0)=0, \varphi \in S(\mathbb{B})$ and $\mu \in W(\mathbb{B})$. Then, P_{φ}^{g} : $\mathcal{B}_{\log _{k}}\left(\operatorname{or} \mathcal{B}_{\log _{k}, 0}\right) \rightarrow \mathcal{B}_{\mu}$ is compact if and only if it is bounded and for any bounded sequence $\left(f_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{B}_{\log _{k}}\left(\operatorname{or} \mathcal{B}_{\log _{k}, 0}\right)$ converging to zero uniformly on compacts of \mathbb{B}, we have $\lim _{k \rightarrow+\infty}\left\|P_{\varphi}^{g} f_{k}\right\|_{\mathcal{B}_{\mu}}=0$.

3. Main Results

Now, we are in a position to state and prove our main results.
Theorem 2. Suppose that $k \in \mathbb{N}, a \in\left[2 e^{[k]},+\infty\right), g \in H(\mathbb{B}), g(0)=0, \varphi \in S(\mathbb{B}), \mu \in W(\mathbb{B})$ and that $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu}$ is bounded, where $X \in\left\{\mathcal{B}_{\log _{k}}, \mathcal{B}_{\log _{k}, 0}\right\}$. Then,

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{X \rightarrow \mathcal{B}_{\mu}}=\max \left\{\|g\|_{H_{\mu}^{\infty}}, \sup _{z \in \mathbb{B}} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right)\right\} \tag{15}
\end{equation*}
$$

Proof. From (14) and (11), it follows that, for $f \in \mathcal{B}_{\log _{k}}$, we have

$$
\begin{align*}
\left\|P_{\varphi}^{g} f\right\|_{\mathcal{B}_{\mu}} & =\sup _{z \in \mathbb{B}} \mu(z)|g(z) f(\varphi(z))| \\
& \leq\|f\|_{\mathcal{B}_{\log _{k}}^{(a)}}^{\sup } \underset{z \in \mathbb{B}}{ } \mu(z)|g(z)| \max \left\{1, \ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right\}, \tag{16}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{X \rightarrow \mathcal{B}_{\mu}} \leq \max \left\{\|g\|_{H_{\mu}^{\infty}} \sup _{z \in \mathbb{B}} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right)\right\} \tag{17}
\end{equation*}
$$

If $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu}$ is bounded, then for $f_{0}(z) \equiv 1 \in \mathcal{B}_{\log _{k}, 0}$, we have $\left\|f_{0}\right\|_{\mathcal{B}_{\log _{k}}}=1$, from which together with the boundedness, it follows that

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{X \rightarrow \mathcal{B}_{\mu}} \geq\left\|P_{\varphi}^{g} f_{0}\right\|_{\mathcal{B}_{\mu}}=\sup _{z \in \mathbb{B}} \mu(z)|g(z)| . \tag{18}
\end{equation*}
$$

Let

$$
\begin{equation*}
h_{w}(z)=\ln ^{[k+1]} \frac{a}{1-\langle z, w\rangle}-\ln ^{[k+1]} a, \tag{19}
\end{equation*}
$$

and $w \in \mathbb{B}$.
Then,

$$
\begin{equation*}
1-|z| \leq|1-\langle z, w\rangle|<2 \tag{20}
\end{equation*}
$$

for $z, w \in \mathbb{B}$. Relation (20) together with Lemma 1 implies

$$
\begin{align*}
(1-|z|)\left(\prod_{j=1}^{k} \ln n^{[j]} \frac{a}{1-|z|}\right)\left|\nabla h_{w}(z)\right| & =\frac{|w|(1-|z|) \prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-|z|}}{|1-\langle z, w\rangle|\left|\prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-\langle z, w\rangle}\right|} \tag{21}\\
& \leq \frac{|w|(1-|z|) \prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-|z|}}{|1-\langle z, w\rangle| \prod_{j=1}^{k} \ln ^{[j]} \frac{a}{|1-\langle z, w\rangle|}}<1 . \tag{22}
\end{align*}
$$

Inequality (22) along with the fact that $h_{w}(0)=0$ implies

$$
\begin{equation*}
\sup _{w \in \mathbb{B}}\left\|h_{w}\right\|_{\mathcal{B}_{\log _{k}}}^{(a)} \leq 1 \tag{23}
\end{equation*}
$$

Let $|z| \rightarrow 1$ in (21); then, we have $h_{w} \in \mathcal{B}_{\log _{k}, 0}, w \in \mathbb{B}$.
If $\varphi(w) \neq 0$ and $t \in(0,1)$, then from the boundedness of $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu}$ and (23), we have

$$
\begin{align*}
\left\|P_{\varphi}^{g}\right\|_{X \rightarrow \mathcal{B}_{\mu}} & \geq\left\|P_{\varphi}^{g} h_{t \varphi(w) /|\varphi(w)|}\right\|_{\mathcal{B}_{\mu}} \\
& =\sup _{z \in \mathbb{B}} \mu(z)|g(z)|\left|\ln ^{[k+1]} \frac{a}{1-t\langle\varphi(z), \varphi(w) /| \varphi(w)| \rangle}-\ln ^{[k+1]} a\right| \\
& \geq \mu(w)|g(w)|\left(\ln ^{[k+1]} \frac{a}{1-t|\varphi(w)|}-\ln ^{[k+1]} a\right) \tag{24}
\end{align*}
$$

Note that (24) also holds when $\varphi(w)=0$.
Let $t \rightarrow 1^{-}$in (24), and taking the supremum over \mathbb{B}, we obtain

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{X \rightarrow \mathcal{B}_{\mu}} \geq \sup _{z \in \mathbb{B}} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) . \tag{25}
\end{equation*}
$$

Relations (18) and (25) imply

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{X \rightarrow \mathcal{B}_{\mu}} \geq \max \left\{\|g\|_{H_{\mu}^{\infty}}, \sup _{z \in \mathbb{B}} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right)\right\} \tag{26}
\end{equation*}
$$

Combining the inequalities in (17) and (26), the formula in (15) immediately follows.

Using the test function $f_{0}(z) \equiv 1$ and the fact that the set of polynomials is dense in $\mathcal{B}_{\log _{k}, 0}$, the following theorem is easily proved. We omit the standard proof.

Theorem 3. Suppose that $k \in \mathbb{N}, g \in H(\mathbb{B}), g(0)=0, \varphi \in S(\mathbb{B})$, and $\mu \in W(\mathbb{B})$. Then, $P_{\varphi}^{g}: \mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu, 0}$ is bounded if and only if $P_{\varphi}^{g}: \mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu}$ is bounded and $g \in H_{\mu, 0}^{\infty}$.

The following result is a consequence of the previous two theorems.
Corollary 1. Suppose that $k \in \mathbb{N}, g \in H(\mathbb{B}), g(0)=0, \varphi \in S(\mathbb{B}), \mu \in W(\mathbb{B})$ and that $P_{\varphi}^{g}: \mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu, 0}$ is bounded. Then,

$$
\left\|P_{\varphi}^{g}\right\|_{\mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu, 0}}=\max \left\{\|g\|_{H_{\mu}^{\infty}}, \sup _{z \in \mathbb{B}} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right)\right\}
$$

Theorem 4. Suppose that $k \in \mathbb{N}, a \in\left[2 e^{[k]},+\infty\right), g \in H(\mathbb{B}), g(0)=0, \varphi \in S(\mathbb{B}), \mu \in W(\mathbb{B})$ and $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu}$ is bounded, where $X \in\left\{\mathcal{B}_{\log _{k}}, \mathcal{B}_{\log _{k}, 0}\right\}$. Then,
(a) If $\|\varphi\|_{\infty}=1$, we have

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{e, X \rightarrow \mathcal{B}_{\mu}}=\limsup _{|\varphi(z)| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) \tag{27}
\end{equation*}
$$

(b) If $\|\varphi\|_{\infty}<1$, we have

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{e, X \rightarrow \mathcal{B}_{\mu}}=0 . \tag{28}
\end{equation*}
$$

Proof. (a) Let $\varepsilon>0$ and $w \in \mathbb{B} \backslash\{0\}$ be fixed, and

$$
h_{w, \varepsilon}(z)=\left(\ln ^{[k+1]} \frac{a}{1-|w|}-\ln ^{[k+1]} a\right)^{-\varepsilon}\left(\ln ^{[k+1]} \frac{a(1+|w|)}{1-\langle z, w\rangle}-\ln ^{[k+1]} a\right)^{\varepsilon+1}, z \in \mathbb{B} .
$$

Then,

$$
\begin{align*}
& (1-|z|)\left(\prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-|z|}\right)\left|\nabla h_{w, \varepsilon}(z)\right| \\
= & (\varepsilon+1) \frac{|w|(1-|z|) \prod_{j=1}^{k} \ln \frac{a}{[j]} \frac{a}{1-|z|}}{|1-\langle z, w\rangle|\left|\prod_{j=1}^{k} \ln \ln ^{[j]} \frac{a(1+|w|) \mid}{1-\langle z, w\rangle}\right|} \\
& \times\left|\ln ^{[k+1]} \frac{a(1+|w|)}{1-\langle z, w\rangle}-\ln ^{[k+1]} a\right|^{\varepsilon}\left(\ln ^{[k+1]} \frac{a}{1-|w|}-\ln ^{[k+1]} a\right)^{-\varepsilon} \tag{29}\\
\leq & (\varepsilon+1) \frac{|w|(1-|z|) \prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-|z|}}{|1-\langle z, w\rangle|\left|\prod_{j=1}^{k} \ln ^{[j]} \frac{a(1+|w|) \mid}{1-\langle z, w\rangle}\right|}\left(\ln ^{[k+1]} \frac{a}{1-|w|}-\ln ^{[k+1]} a\right)^{-\varepsilon} \\
& \times\left(\ln \left(\ln \left(\cdots\left(\ln \frac{a(1+|w|)}{|1-\langle z, w\rangle|}+2 \pi\right) \cdots\right)+2 \pi\right)+2 \pi-\ln ^{[k+1]} a\right)^{\varepsilon} \\
\leq & (\varepsilon+1)|w|\left(\ln { }^{[k+1]} \frac{a}{1-|w|}-\ln ^{[k+1]} a\right)^{-\varepsilon} \\
& \left(\ln \left(\ln \left(\cdots\left(\ln \frac{a(1+|w|)}{1-|w|}+2 \pi\right) \cdots\right)+2 \pi\right)+2 \pi-\ln ^{[k+1]} a\right)^{\varepsilon} . \tag{30}
\end{align*}
$$

Relation (29) implies $h_{w, \varepsilon} \in \mathcal{B}_{\log _{k}, 0}$, for $w \in \mathbb{B} \backslash\{0\}$, while by taking limit in relation (30), we obtain

$$
\begin{equation*}
\limsup _{|w| \rightarrow 1} b_{\log _{k}}^{(a)}\left(h_{w, \varepsilon}\right) \leq \varepsilon+1 \tag{31}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
\lim _{|w| \rightarrow 1}\left|h_{w, \varepsilon}(0)\right|=0 \tag{32}
\end{equation*}
$$

From (31) and (32), it follows that

$$
\begin{equation*}
\limsup _{|w| \rightarrow 1}\left\|h_{w, \varepsilon}\right\|_{\mathcal{B}_{\log _{k}}}^{(a)} \leq \varepsilon+1 \tag{33}
\end{equation*}
$$

If $\left(\varphi\left(z_{k}\right)\right)_{k \in \mathbb{N}} \subset \mathbb{B}$ satisfies the condition $\left|\varphi\left(z_{k}\right)\right| \rightarrow 1$ as $k \rightarrow+\infty$, then (33) for

$$
f_{k}(z):=h_{\varphi\left(z_{k}\right), \varepsilon}(z), \quad k \in \mathbb{N},
$$

implies

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty}\left\|f_{k}\right\|_{\mathcal{B}_{\log _{k}}}^{(a)} \leq \varepsilon+1 \tag{34}
\end{equation*}
$$

The assumption $f_{k} \rightarrow 0$ on compacts of \mathbb{B} implies that $f_{k} \rightarrow 0$ weakly in $\mathcal{B}_{\log _{k}, 0}$ as $k \rightarrow+\infty$. Indeed, the operator $L(f)=f^{\prime}$ is an isometric isomorphism between $\mathcal{B}_{\log _{k}, 0} / \mathbb{C}$ and $H_{\log _{k}, 0}^{\infty}$. On the other hand, a bounded sequence converges weakly to zero in $H_{\log _{k}, 0}^{\infty}$ if and only if it converges to zero uniformly on compacts of \mathbb{B} (see, e.g., some reasoning in [3] and the estimate in (11), and note that the unit ball in $H_{\log _{k}, 0}^{\infty}$ is a normal family).

Hence, if $K: \mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu}$ is compact, then $\lim _{k \rightarrow+\infty}\left\|K f_{k}\right\|_{\mathcal{B}_{\mu}}=0$. This fact, (34), and the estimate

$$
\begin{aligned}
\left\|f_{k}\right\|_{\mathcal{B}_{\log _{k}}}^{(a)}\left\|P_{\varphi}^{g}+K\right\|_{\mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu}} & \geq\left\|\left(P_{\varphi}^{g}+K\right)\left(f_{k}\right)\right\|_{\mathcal{B}_{\mu}} \\
& \geq\left\|P_{\varphi}^{g} f_{k}\right\|_{\mathcal{B}_{\mu}}-\left\|K f_{k}\right\|_{\mathcal{B}_{\mu}}
\end{aligned}
$$

imply

$$
\begin{align*}
\frac{\left\|P_{\varphi}^{g}+K\right\|_{\mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu}}}{(\varepsilon+1)^{-1}} & \geq \limsup _{k \rightarrow \infty}\left\|f_{k}\right\|_{\mathcal{B}_{\log _{k}}}^{(a)}\left\|P_{\varphi}^{g}+K\right\|_{\mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu}} \\
& \geq \limsup _{k \rightarrow \infty}\left(\left\|P_{\varphi}^{g} f_{k}\right\|_{\mathcal{B}_{\mu}}-\left\|K f_{k}\right\|_{\mathcal{B}_{\mu}}\right) \\
& =\limsup _{k \rightarrow \infty}\left\|P_{\varphi}^{g} f_{k}\right\|_{\mathcal{B}_{\mu}} \\
& =\limsup _{k \rightarrow \infty} \sup _{z \in \mathbb{B}} \mu(z)\left|g(z) \| f_{k}(\varphi(z))\right| \\
& \geq \limsup _{k \rightarrow \infty} \mu\left(z_{k}\right)\left|g\left(z_{k}\right) f_{k}\left(\varphi\left(z_{k}\right)\right)\right| \\
& =\limsup _{k \rightarrow \infty} \mu\left(z_{k}\right)\left|g\left(z_{k}\right)\right|\left(\ln ^{[k+1]} \frac{a}{1-\left|\varphi\left(z_{k}\right)\right|}-\ln ^{[k+1]} a\right) \tag{35}
\end{align*}
$$

From (35) and since $K: \mathcal{B}_{\log _{k} 0} \rightarrow \mathcal{B}_{\mu}$ is an arbitrary compact operator, by letting $\varepsilon \rightarrow+0$, we have

$$
\left\|P_{\varphi}^{g}\right\|_{e, \mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu}} \geq \limsup _{k \rightarrow \infty} \mu\left(z_{k}\right)\left|g\left(z_{k}\right)\right|\left(\ln ^{[k+1]} \frac{a}{1-\left|\varphi\left(z_{k}\right)\right|}-\ln ^{[k+1]} a\right)
$$

Hence,

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{e, \mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu}} \geq \limsup _{|\varphi(z)| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) \tag{36}
\end{equation*}
$$

Let $\rho_{m} \in(0,1), m \in \mathbb{N}, \rho_{m} \nearrow 1$ as $m \rightarrow+\infty$, and

$$
\begin{equation*}
P_{\rho_{m} \varphi}^{g}(f)(z)=\int_{0}^{1} f\left(\rho_{m} \varphi(t z)\right) g(t z) \frac{d t}{t}, \quad m \in \mathbb{N} \tag{37}
\end{equation*}
$$

Suppose that $\left(h_{k}\right)_{k \in \mathbb{N}} \subset X$ is bounded and $h_{k} \rightarrow 0$ uniformly on compacts of \mathbb{B}. We have $P_{\varphi}^{g}\left(f_{0}\right)=g \in H_{\mu}^{\infty}$, so

$$
\mu(z)\left|\Re P_{\rho_{m} \varphi}^{g}\left(h_{k}\right)(z)\right|=\mu(z)\left|g(z) h_{k}\left(\rho_{m} \varphi(z)\right)\right| \leq\|g\|_{H_{\mu}^{\infty}} \sup _{|w| \leq \rho_{m}}\left|h_{k}(w)\right| \rightarrow 0
$$

as $k \rightarrow+\infty$.
Thus, Lemma 4 implies the compactness of $P_{\rho_{m} \varphi}^{g}: X \rightarrow \mathcal{B}_{\mu}$, for each $m \in \mathbb{N}$.
Since $g \in H_{\mu}^{\infty}$, by Lemmas 2 and 3 , we have that, for $r \in(0,1)$,

$$
\begin{align*}
\left\|P_{\varphi}^{g}-P_{\rho_{m} \varphi}^{g}\right\|_{\mathcal{B}_{\log _{k}} \rightarrow \mathcal{B}_{\mu}}= & \sup _{\|f\|_{\mathcal{B}_{\log _{k}}^{(a)} \leq 1} \leq \sup _{z \in \mathbb{B}}} \mu(z)\left|g(z) \| f(\varphi(z))-f\left(\rho_{m} \varphi(z)\right)\right| \\
\leq & \sup _{\|f\|_{\mathcal{B}_{\log _{k}}^{(a)}} \leq 1|\varphi(z)| \leq r} \sup \mu(z)|g(z)|\left|f(\varphi(z))-f\left(\rho_{m} \varphi(z)\right)\right| \\
& +\sup _{\|f\|_{\mathcal{B}_{\log _{k}}^{(a)}} \leq 1|\varphi(z)|>r} \sup \mu(z)|g(z)|\left|f(\varphi(z))-f\left(\rho_{m} \varphi(z)\right)\right| \\
\leq & \|g\|_{H_{\mu}^{\infty}}^{\infty} \sup _{\|f\|_{\mathcal{B}_{\log _{k}}}^{(a)} \leq 1|\varphi(z)| \leq r} \sup \left|f(\varphi(z))-f\left(\rho_{m} \varphi(z)\right)\right| \\
& +\sup _{|\varphi(z)|>r} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} \frac{a}{1-\rho_{m}|\varphi(z)|}\right) \\
\leq & \|g\|_{H_{\mu}^{\infty}}^{\infty} \sup _{\|f\|_{\mathcal{B}_{\log _{k}}^{(a)}}^{(a)} \leq 1|\varphi(z)| \leq r} \sup \left|f(\varphi(z))-f\left(\rho_{m} \varphi(z)\right)\right| \\
& +\sup _{|\varphi(z)|>r} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) . \tag{38}
\end{align*}
$$

Furthermore,

$$
\begin{align*}
& \limsup _{m \rightarrow+\infty} \sup _{\|f\|_{\mathcal{B}_{\log _{k}}^{(a)}}^{(a} \leq 1|\varphi(z)| \leq r} \sup _{\mid f(\varphi)}\left|f(z)-f\left(\rho_{m} \varphi(z)\right)\right| \\
\leq & \limsup _{m \rightarrow+\infty} \sup _{\|f\|_{\mathcal{B}_{\log _{k}}}^{(a)} \leq 1|\varphi(z)| \leq r}\left(1-\rho_{m}\right)|\varphi(z)| \sup _{|w| \leq r}|\nabla f(w)| \\
\leq & \limsup _{m \rightarrow+\infty} \frac{\left(1-\rho_{m}\right) r}{(1-r) \prod_{j=1}^{k} \ln ^{[j]} \frac{a}{1-r}} \sup _{\|f\|_{\mathcal{B}_{\log _{k}}}^{(a)} \leq 1}\|f\|_{\mathcal{B}_{\log _{k}}^{(a)}}^{(a)}=0 . \tag{39}
\end{align*}
$$

Letting $m \rightarrow+\infty$ in (38), using (39), then letting $r \rightarrow 1$, it follows that

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{e, \mathcal{B}_{\log _{k}} \rightarrow \mathcal{B}_{\mu}} \leq \limsup _{|\varphi(z)| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) \tag{40}
\end{equation*}
$$

Relations (36), (40), and the obvious inequality

$$
\left\|P_{\varphi}^{g}\right\|_{e, \mathcal{B}_{\log _{k}} \rightarrow \mathcal{B}_{\mu}} \geq\left\|P_{\varphi}^{g}\right\|_{e, \mathcal{B}_{\log _{k}, 0} \rightarrow \mathcal{B}_{\mu}}
$$

imply (27).
(b) From this assumption, the compactness of $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu}$ follows, similar to the operator in (37). So, (28) holds.

Theorem 5. Suppose that $k \in \mathbb{N}, a \in\left[2 e^{[k]},+\infty\right), g \in H(\mathbb{B}), g(0)=0, \varphi \in S(\mathbb{B}), \mu \in W(\mathbb{B})$, and $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu, 0}$ is bounded, where $X \in\left\{\mathcal{B}_{\log _{k}}, \mathcal{B}_{\log _{k}, 0}\right\}$. Then,

$$
\begin{equation*}
\left\|P_{\varphi}^{g}\right\|_{e, X \rightarrow \mathcal{B}_{\mu, 0}}=\limsup _{|z| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) \tag{41}
\end{equation*}
$$

Proof. Since $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu, 0}$ is bounded, we have $P_{\varphi}^{g} f_{0}=g \in H_{\mu, 0}^{\infty}$.

Assume that $\|\varphi\|_{\infty}=1$. Then,

$$
\begin{align*}
& \limsup _{|z| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) \\
\geq & \limsup _{|\varphi(z)| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) . \tag{42}
\end{align*}
$$

Choose $\left(z_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{B}$ so that the following relation holds

$$
\begin{align*}
& \limsup _{|z| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) \tag{43}\\
= & \lim _{k \rightarrow \infty} \mu\left(z_{k}\right)\left|g\left(z_{k}\right)\right|\left(\ln ^{[k+1]} \frac{a}{1-\left|\varphi\left(z_{k}\right)\right|}-\ln ^{[k+1]} a\right) .
\end{align*}
$$

If $\sup _{k \in \mathbb{N}}\left|\varphi\left(z_{k}\right)\right|<1$, then the fact that $g \in H_{\mu, 0}^{\infty}$, implies

$$
\lim _{k \rightarrow \infty} \mu\left(z_{k}\right)\left|g\left(z_{k}\right)\right|\left(\ln ^{[k+1]} \frac{a}{1-\left|\varphi\left(z_{k}\right)\right|}-\ln ^{[k+1]} a\right)=0 .
$$

Thus, (42) and (43) imply

$$
\limsup _{|\varphi(z)| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right)=0 .
$$

If $\sup _{k \in \mathbb{N}}\left|\varphi\left(z_{k}\right)\right|=1$, then $\left|\varphi\left(z_{k_{m}}\right)\right| \rightarrow 1$ as $m \rightarrow+\infty$, for a subsequence $\left(\varphi\left(z_{k_{m}}\right)\right)_{m \in \mathbb{N}}$. Hence,

$$
\begin{aligned}
& \limsup \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) \\
= & \limsup _{|\varphi(z)| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) .
\end{aligned}
$$

This, along with Theorem 4, implies the theorem in this case.
If $\|\varphi\|_{\infty}<1$, then $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu, 0}$ is compact, so that $\left\|P_{\varphi}^{g}\right\|_{e, X \rightarrow \mathcal{B}_{\mu, 0}}=0$. Since $g \in H_{\mu, 0}^{\infty}$, we have

$$
\begin{gathered}
\quad \limsup _{|z| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right) \\
\leq\left(\ln ^{[k+1]} \frac{a}{1-\|\varphi\|_{\infty}}-\ln ^{[k+1]} a\right) \lim _{|z| \rightarrow 1} \mu(z)|g(z)|=0 .
\end{gathered}
$$

Hence, in this case, (41) holds.

Corollary 2. Suppose that $k \in \mathbb{N}, a \in\left[2 e^{[k]},+\infty\right), g \in H(\mathbb{B}), g(0)=0, \varphi \in S(\mathbb{B}), \mu \in W(\mathbb{B})$, and $X \in\left\{\mathcal{B}_{\log _{k}}, \mathcal{B}_{\log _{k}, 0}\right\}$. Then, the following claims hold.
(a) $\quad P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu}$ is bounded if and only if

$$
\max \left\{\|g\|_{H_{\mu}^{\infty}} \sup _{z \in \mathbb{B}} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right)\right\}<+\infty .
$$

(b) If $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu}$ is bounded, then $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu}$ is compact if and only if

$$
\lim _{|\varphi(z)| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right)=0 .
$$

(c) If $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu, 0}$ is bounded, then $P_{\varphi}^{g}: X \rightarrow \mathcal{B}_{\mu, 0}$ is compact if and only if

$$
\lim _{|z| \rightarrow 1} \mu(z)|g(z)|\left(\ln ^{[k+1]} \frac{a}{1-|\varphi(z)|}-\ln ^{[k+1]} a\right)=0
$$

Funding: This research received no external funding.
Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The author declares that he has no conflict of interest.

References

1. Rudin, W. Function Theory in Polydiscs; W. A. Benjamin, Inc.: New York, NY, USA; Amsterdam, The Netherlands, 1969.
2. Rudin, W. Function Theory in the Unit Ball of \mathbb{C}^{n}; Grundlehren der Mathematischen Wissenschaften: New York, NY, USA; Springer: Berlin, Germany, 1980.
3. Bierstedt, K.D.; Summers, W.H. Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. A 1993, 54, 70-79. [CrossRef]
4. Lusky, W. On the structure of $H_{v}^{0}(D)$ and $h_{v}^{0}(D)$. Math. Nachr. 1992, 159, 279-289. [CrossRef]
5. Lusky, W. On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 1995, 59, 309-320. [CrossRef]
6. Lusky, W. On the isomorphic classification of weighted spaces of holomorphic functions. Acta Univ. Carolin. Math. Phys. 2000, 41, 51-60.
7. Lusky, W. On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 2006, 175, 19-45. [CrossRef]
8. Rubel, L.A.; Shields, A.L. The second duals of certain spaces of analytic functions. J. Aust. Math. Soc. 1970, 11, 276-280. [CrossRef]
9. Shields, A.L.; Williams, D.L. Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 1971, 162, 287-302. [CrossRef]
10. Liu, Y.M.; Yu, Y.Y. Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball. J. Math. Anal. Appl. 2015, 423, 76-93. [CrossRef]
11. Stević, S. Norm of weighted composition operators from Bloch space to H_{μ}^{∞} on the unit ball. Ars Combin. 2008, 88, 125-127.
12. Stević, S. Norms of some operators from Bergman spaces to weighted and Bloch-type space. Util. Math. 2008, 76, 59-64.
13. Stević, S. Norm of weighted composition operators from α-Bloch spaces to weighted-type spaces. Appl. Math. Comput. 2009, 215, 818-820. [CrossRef]
14. Stević, S. Norm of some operators from logarithmic Bloch-type spaces to weighted-type spaces. Appl. Math. Comput. 2012, 218, 11163-11170. [CrossRef]
15. Yang, W.; Yan, W. Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces. Bull. Korean Math. Soc. 2011, 48, 1195-1205.
16. Zhu, X. Weighted composition cperators from $F(p, q, s)$ spaces to H_{μ}^{∞} spaces. Abst. Appl. Anal. 2009, 2009, 290978. [CrossRef]
17. Zhu, X. Weighted composition operators from weighted Hardy spaces to weighted-type spaces. Demonstr. Math. 2013, 46, 335-344.
18. Dunford, N.; Schwartz, J.T. Linear Operators I; Interscience Publishers, Jon Willey and Sons: New York, NY, USA, 1958. [CrossRef]
19. Rudin, W. Functional Analysis, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1991.
20. Trenogin, V.A. Funktsional'niy Analiz; Nauka: Moskva, Russia, 1980. (In Russian)
21. Malavé-Malavé, R.J.; Ramos-Fernández, J.C. Superposition operators between logarithmic Bloch spaces. Rend. Circ. Mat. Palermo II Ser. 2019, 68, 105-121.
22. Stević, S. On operator P_{φ}^{g} from the logarithmic Bloch-type space to the mixed-norm space on unit ball. Appl. Math. Comput. 2010, 215, 4248-4255. [CrossRef]
23. Stević, S. Norm and essential norm of an integral-type operator from the logarithmic Bloch space to the Bloch-type space on the unit ball. Math. Methods Appl. Sci. 2022, 45, 11905-11915. [CrossRef]
24. Hu, Z.J. Extended Cesàro operators on mixed norm spaces. Proc. Am. Math. Soc. 2003, 131, 2171-2179. [CrossRef]
25. Hu, Z.J. Extended Cesàro operators on the Bloch space in the unit ball of \mathbb{C}^{n}. Acta Math. Sci. Ser. B Engl. Ed. 2003, 23, 561-566. [CrossRef]
26. Stević, S. On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball. J. Math. Anal. Appl. 2009, 354, 426-434. [CrossRef]
27. Benke, G.; Chang, D.C. A note on weighted Bergman spaces and the Cesáro operator. Nagoya Math. J. 2000, 159, 25-43. [CrossRef]
28. Chang, D.C.; Li, S.; Stević, S. On some integral operators on the unit polydisk and the unit ball. Taiwan J. Math. 2007, 11, 1251-1286. [CrossRef]
29. Du, J.; Zhu, X. Essential norm of an integral-type operator from ω-Bloch spaces to μ-Zygmund spaces on the unit ball. Opusc. Math. 2018, 38, 829-839.
30. Li, H.; Guo, Z. Note on a Li-Stević integral-type operator from mixed-norm spaces to nth weighted spaces. J. Math. Inequal. 2017, 11, 77-85. [CrossRef]
31. Li, H.; Li, S. Norm of an integral operator on some analytic function spaces on the unit disk. J. Inequal. Math. 2013, $2013,342$. [CrossRef]
32. Li, S. An integral-type operator from Bloch spaces to Q_{p} spaces in the unit ball. Math. Inequal. Appl. 2012, 15, 959-972. [CrossRef]
33. Li, S. On an integral-type operator from the Bloch space into the $Q_{K}(p, q)$ space. Filomat 2012, 26,331-339. [CrossRef]
34. Pan, C. On an integral-type operator from $Q_{k}(p, q)$ spaces to α-Bloch spaces. Filomat 2011, 25, 163-173.
35. Guo, Z.; Liu, L.; Shu, Y. On Stević-Sharma operators from the mixed-norm spaces to Zygmund-type spaces. Math. Inequal. Appl. 2021, 24, 445-461. [CrossRef]
36. Zhu, X. Generalized weighted composition operators on weighted Bergman spaces. Numer. Funct. Anal. Opt. 2009, 30, 881-893.
37. Pelczynski, A. Norms of classical operators in function spaces. Astérisque 1985, 131, 137-162.
38. Rudin, W. Real and Complex Analysis, 3rd ed.; Higher Mathematics Series; McGraw-Hill Education: London, UK; New York, NY, USA; Sidney, Australia, 1976.
39. Trenogin, V.A.; Pisarevskiy, B.M.; Soboleva, T.S. Zadachi i Uprazhneniya po Funktsional'nomu Analizu; Nauka: Moskva, Russia, 1984. (In Russian)
40. Schwartz, H.J. Composition Operators on H^{p}. Ph.D. Thesis, University of Toledo, Toledo, OH, USA, 1969.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

