
Citation: Mihaljević, M.J.; Todorović,

M.; Knežević, M. An Evaluation of

Power Consumption Gain and

Security of Flexible Green Pool

Mining in Public Blockchain Systems.

Symmetry 2023, 15, 924. https://

doi.org/10.3390/sym15040924

Academic Editor: José Carlos R.

Alcantud

Received: 28 February 2023

Revised: 11 April 2023

Accepted: 13 April 2023

Published: 16 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

An Evaluation of Power Consumption Gain and Security of
Flexible Green Pool Mining in Public Blockchain Systems
Miodrag J. Mihaljević 1 , Milan Todorović 1,2 and Milica Knežević 1,2,*

1 Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia;
miodragm@turing.mi.sanu.ac.rs (M.J.M.); mtodorovic@mi.sanu.ac.rs (M.T.)

2 Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
* Correspondence: mknezevic@mi.sanu.ac.rs

Abstract: This paper proposes a variant of the recently reported pool mining approach and provides
a reduction in the energy that is consumed by the blockchain consensus protocol. The novelty of the
proposed architecture lies in the employment of an innovative cryptographic puzzle that is based on
stream ciphering. This enables flexibility in setting the difficulty parameter of the protocol, and allows
for the separation of the energy and memory resources that are required for the puzzle solving. The
proposed approach provides high resistance against the following malicious activities of miners in
public blockchain systems: (i) the submission of fake work and fictitious computation results; and (ii)
some well-known attacks that target the blockchain incentive mechanism. We experimentally evaluate
the power consumption of the proposed consensus protocol and compare it with the traditional
proof-of-work protocol based on hashing. The obtained results point out the gain that the proposed
pool mining provides compared with the traditional types.

Keywords: blockchain; consensus protocol; pool mining; energy reduction; security evaluation;
selfish mining; block withholding attack

1. Introduction

Pool mining represents a predominant mode of miners’ participation in blockchain
systems, especially in public blockchains that use proof-of-work-based consensus protocols.
Miners primarily join mining pools in order to ensure a more stable income compared with
solo mining, where the rewards are earned sporadically and irregularly. The mining process
can be seen as a type of lottery, where the probability of winning as individual miners with
small computational power is almost negligible. More precisely, it would take an extremely
long time for an individual miner to solve a block and win the reward. Mining within a
mining pool provides a solution for this problem and enables a steadier income for miners,
rewarding them proportionally for the work that they invested in finding a block. On the
other hand, pool mining introduces new issues related to reward distribution and miners’
incentives. Two well-known attacks related to mining in pools are block withholding [1]
and selfish mining [2]. There are many variants and extensions of these attacks, and a
significant amount of research addresses the problem of block withholding and selfish
mining, proposes prevention techniques, and analyzes the impacts that the attacks have in
blockchain networks.

The consensus protocol in [3] uses energy and memory resources, and allows for a
trade-off between them. It is similar to traditional PoW protocols but has differences in
the cryptographic puzzle and solution-finding technique. Recently, a “green” pool mining
approach based on this protocol was proposed in [4], which reduces energy consumption.
The reported architecture uses pseudo-symmetric, two-dimensional energy-memory al-
location for executing the consensus protocol, which provides resistance against certain
attacks launched against pool mining approaches as well as a reduction in energy spending.

Symmetry 2023, 15, 924. https://doi.org/10.3390/sym15040924 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040924
https://doi.org/10.3390/sym15040924
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3047-3020
https://orcid.org/0000-0002-7741-061X
https://orcid.org/0000-0002-8082-2762
https://doi.org/10.3390/sym15040924
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040924?type=check_update&version=2

Symmetry 2023, 15, 924 2 of 29

Instead of separating the blockchain consensus protocol and monitoring the integrity of
pool miners’ work, this method utilizes a dedicated application of the consensus protocol
to guarantee the honesty of both miners and pool managers.

Motivation for the Work. It is interesting to extend the flexibility of the pool mining
proposed in [4], in particular regarding the flexible setting of the consensus puzzle difficulty.
Furthermore, in addition to honest miners, some malicious miners can join public pools.
Thus, an interesting open issue is to consider advanced pool mining architectures as
providing higher resistance against malicious actions. Specifically, it is interesting to
address blockchain consensus protocols that can straightforwardly support the detection
of deliberate incorrect miners’ work and be highly secure against attacks such as block
withholding and selfish mining in a pool mining setting.

Summary of the Results. This paper proposes a variant of the pool mining approach
recently reported in [4] and an evaluation of the security and power consumption. The
architecture employs a cryptographic puzzle based on stream ciphering; it separates the
energy and memory resources that are necessary for finding the puzzle’s solution, and
gives the pool manager control over the memory resources, i.e., tables, that enables the
substantial efficiency of the blockchain puzzle-solving process. We discuss the security
of the proposed approach against the following malicious activities in public blockchains:
(i) fake work of the miners and spamming with fictitious computation results where,
instead of the evaluated data, miners provide the pool manager with random values;
and (ii) certain attacks targeting the consensus protocol layer and incentive mechanism
in public blockchain pool mining. The correctness control of miners’ work is based on
a random sample checking. We consider three different attack scenarios: (i) attack by a
malicious miner without memory resources; (ii) attack by a malicious miner with certain
memory resources; and (iii) attack by a group of malicious miners that share their hidden
memory resources. The experimental evaluation shows a significant reduction in power
consumption when compared with the standard PoW hash-based consensus protocol.

Organization of the Paper. The background and related works are presented in Section 2.
A variant of the previously reported pool mining approach is proposed in Section 3.
Certain security issues of the proposed pool mining are discussed in Sections 4 and 5.
An experimental evaluation of the considered pool mining and the gain achievable in
comparison with a traditional method based on hashing PoW is given in Section 6 and
Appendix A. Discussion of the experimental results is conducted in Section 7. Finally, the
conclusions are given in Section 8.

2. Background and Related Work

The main goal of this paper is to propose a pool mining approach that provides a
reduction in energy that the blockchain consensus protocol requires and high resistance
against the security treats that are related to the pool mining. Accordingly, this section
provides an overview of: (i) pool mining; (ii) the related work regarding certain techniques
for energy consumption reduction or meaningful spending, i.e., green blockchain consensus
protocols; and (iii) blockchain attacks and corresponding countermeasures, with a focus on
the attacks targeting the incentive mechanism.

2.1. Pool Mining

Pool miners are rewarded in accordance with their contribution to the probability of
finding a block, i.e., solving the blockchain cryptographic puzzle. More precisely, the pool
manager rewards the miners based on the work they completed in solving the sub-puzzles,
which present a valid partial proof-of-work. Because the difficulty of a sub-puzzle is
significantly lower than the challenging puzzle, the miners can solve the sub-puzzles with
a reasonable amount of work. A solution of the sub-puzzle may as well be a solution of the
blockchain puzzle, but not necessarily. If the solution of the sub-puzzle also satisfies the
difficulty of the current blockchain puzzle, it is a complete solution; otherwise, it is a partial
solution. It should be noted that the pool receives a reward if and only if it finds a complete

Symmetry 2023, 15, 924 3 of 29

solution. If none of the partial solutions found by the pool miners is a complete solution,
the pool does not get the reward, but depending on the employed reward system, the
miners might still receive compensation for their work (see pay-per-share [5]). A realistic
scenario, especially for public blockchains, is that a pool, aside from honest miners, also
contains dishonest ones. Dishonest mining covers any malicious activity directed against
mining pools or competitors. The main goal of dishonest miners is usually to increase
their reward and gain more revenue than their fair share. For example, a dishonest miner
could keep any complete solution he finds and report to the pool only partial solutions.
This way, a dishonest miner still shares the reward won by the entire pool without any
relevant contribution.

One of the first papers analyzing the (dis)advantages and problems of the pool mining
incentive mechanisms is [5], and more recent studies on the pool mining issues can be
found in [6–10].

2.2. Green Consensus Protocols Based on Proof-of-Work

Many blockchain networks use the proof-of-work (PoW) consensus protocol, which
consumes significant amounts of energy but provides no useful outcome other than speci-
fying accounting rights among miners. However, several approaches have been proposed
to either reduce the energy consumption or to use the energy to perform some useful tasks.

To address high energy consumption-associated mining, the authors of [11] proposed
a solution that suggests compensating the runner(s)-up of a round of mining by giving
them exclusive rights to solve the block in the following round. This reduces the number
of competing nodes and, as a result, lowers energy consumption. The proposed solution
involves dividing time in epochs, each consisting of the two mining rounds. In the first
round, every network node can participate in mining, while only the runners-up can
participate in the second round. This approach can reduce the overall energy consumption
of the mining process by almost 50%. The analysis presented in [11] shows that this
solution is effective at reducing energy consumption, the likelihood of fork occurrences,
the degree of mining centralization, and the impact of a transaction censorship attack in
the PoW algorithm.

The consensus protocol proposed in [3] introduces a novel approach to the proof-of-
work (PoW)-based consensus that aims to reduce energy consumption by utilizing memory
resources as a trade-off. This protocol has been used in a recent “green” pool mining
strategy to further reduce energy consumption [4]. The protocol framework follows the
traditional structure of PoW-based consensus protocols used in public blockchains, such
as Ethereum and Bitcoin, with three main phases: block construction, puzzle solving, and
block inclusion in the blockchain. However, the protocol differs from previous protocols in
two areas: the cryptographic puzzle and the method used for constructing and solving it.
These differences are discussed in detail in [3].

Ref. [12] proposed a new consensus protocol, proof of federated learning (PoFL),
which is designed to recycle the energy that is wasted in PoW by redirecting it towards
federated learning. Federated learning and pool mining structures in PoW are naturally
compatible, but the separation of the data utilization and ownership in blockchain may
raise data privacy concerns during training and verification of a model. To overcome this
issue, the paper proposes a privacy-preserving mechanism for verifying models and a
reverse game-based mechanism for trading data. The former is used to verify a trained
model while preserving privacy of used data, while the latter helps to prevent data leakage
during training. The proposed mechanisms are shown to be effective and efficient in
extensive simulations based on artificial and real-world data.

The authors of [13] proposed a novel consensus protocol called combinatorial op-
timization consensus protocol (COCP), which is based off of the proof-of-useful-work
(PoUW) family of protocols. The proposed protocol requires solving real-life combinatorial
optimization (CO) problems. The complexity of these problems has led to the development
of various problem-dependent stochastic heuristic or metaheuristic methods for COCP.

Symmetry 2023, 15, 924 4 of 29

Like most consensus protocols, COCP is asymmetric in that finding a solution is a difficult
task whereas verifying it is straightforward. The main benefit of COCP is the efficient use
of computing resources for finding solutions for real-life CO problem instances and for
providing incentives for various BC participants. The paper also presents an illustrative ex-
ample based on a real-life blockchain network, highlighting the potential practical impacts
and energy savings that can be achieved using COCP.

2.3. An Overview of Blockchain Attacks

The architecture of a blockchain system consists of the following six layers [14]: the
data layer, network layer, consensus layer, incentive layer, smart contract layer, and appli-
cation layer. Using this layering perspective, we can classify blockchain security threats
and attacks based on which of the layers they target [14,15].

Data layer attacks: These attacks target different elements of the data layers, such as
transaction signatures, timestamping, or cryptographic methods. The following attacks fall
into this category: malleability attack, time hijacking, and quantum attacks.

Network layer attacks: Blockchain is basically a peer-to-peer network in which nodes
communicate with each other following a predescribed set of rules. The attacks on the
network layer affect the efficiency of information propagation and routing. The following
attacks fall into this category: distributed denial of service (DDoS) [16], eclipse attack, Sybil
attack, Border Gateway Protocol (BGP) attack, and consensus delay attack.

Attacks on the consensus and incentive layer: The blockchain consensus protocol and the
underlying incentive mechanism are tightly related as the incentive mechanism ensures
that the most profitable strategy for a miner is to follow the consensus protocol. Attacks
on this layer are directed toward incompatibilities of miners’ incentive, so that attackers
benefit from their malicious and dishonest actions. Section 2.4 discusses this type of attack
and the countermeasures.

Smart contract layer attacks: Some blockchains, such as Ethereum, Hyperledger Fabric,
and EOSIO, enable programmability through smart contracts. Attacks on the smart contract
layers exploit some characteristics of the blockchain platforms, smart contract programming
languages, smart contract execution environment, or bad coding practices. Some examples
of such attacks are: integer overflow attack, re-entrancy attack, and replay attack. A
comprehensive overview of the attacks can be found in [17].

Application layer attacks: There are different blockchain application scenarios, and
cryptocurrencies or decentralized finances (DeFi) are probably the most popular and
recognizable ones. The attacks targeting the application layer are in fact directed at a
specific application. Some of the attacks that fall into this category are cryptojacking
and crypto wallet thefts. Another is the blockchain poisoning attack, which is based on
embedding malicious or illegal files in the blockchain (see [18–20], for example). According
to [18], the attack can be performed as follows: (i) The first step is the preparation of a
malicious or illegal file. The employed files can be privacy information, malware, and any
illegal contents (see [20]); (ii) the attacker broadcasts the transaction with the embedded
malicious or illegal file in the blockchain network; (iii) the file is embedded into the
blockchain through the mining process and appears as a component that is shareable
among the network participants. The reasons why the poisoning attack is very dangerous
include the fact that it provides a widespread sharing of malicious or illegal content within
the blockchain network, and the embedded files are difficult to modify or cancel.

This section provided a brief overview of the attacks on blockchain systems; surveys
on blockchain security, attacks, and countermeasures can be found in [21,22]. The attacks
on the consensus and incentive layer are discussed in more detail in the next section, as
they are the focus of this paper.

Symmetry 2023, 15, 924 5 of 29

2.4. Attacks and Corresponding Countermeasures Related to the Incentive Mechanism and
Pool Mining

An incentive mechanism is one of the core elements of any blockchain system. An
adequate incentive mechanism motivates miners to follow the protocol, as any deviation
from the protocol would be unprofitable. It ensures that a stable consensus between the
miners is reached and guarantees the efficiency of the system. In this section, we review
the attacks targeting incompatibilities of incentive mechanisms.

2.4.1. Selfish Mining

The selfish mining attack was first proposed in [23]. The strategy of selfish miners
consists of the following: Instead of publishing their discovered blocks immediately upon
mining it, they intentionally fork the chain. While the honest miners continue mining
on the public chain, dishonest miners try to extend their private branch. The feasibility
and effectiveness of the attack is a consequence of the blockchain difficulty adjustment
algorithm. The main goal of this attack is to create a private branch that is longer than the
public one mined by the honest miners and to publish it at an opportune moment to gain
larger revenue than its fair share, while the work of the honest miners is wasted. This attack
is commonly performed by a group of colluded miners and not individually. It is also
observed that the rational miners, upon observing the group’s profit, will join the group of
selfish miners and finally become the majority. A number of extensions and modifications
of the original variant from [23] have been proposed. Some recent results on selfish mining
are discussed in [2,24].

Significant research efforts have been invested into the investigation and analysis of
detection strategies, prevention and defense solutions, and the impact of selfish mining
attacks in blockchain networks. Different approaches have been proposed, including
changes in the consensus protocols regarding the selection of the blocks to be broadcasted,
the introduction of a new block type besides the regular blocks, modification of the block
or transaction structure, favoring the blocks with more recent timestamps, and forcing a
block timely publication. For an overview of the detection and prevention mechanisms for
selfish mining, we point to [14,25,26].

2.4.2. Block Withholding

The block withholding attack was first proposed in [5]. The attack is directed against
mining pools with the following strategy: A pool miner withholds any block they suc-
cessfully mine without submitting it to the pool manager, so that the pool cannot claim
any reward for the mined block. Feasibility of the attack is a consequence of the pool
mining protocol, as miners can determine if the share (sub-puzzle solution) they found
is a complete solution as well. There are two main types in this attack: “sabotage” and
“lie-in-wait” attacks [5]. Sabotage is simpler and implies that the miner never reports the
block. It does not bring any direct benefit to the attacker, but it causes financial harm to the
pool manager, even causing bankruptcy. Lie-in-wait is another type of block withholding
where a miner reports the mined blocks with intentional delay while focusing their mining
work where it is most beneficial. Unlike sabotage, lie-in-wait is a profitable attack. The
block withholding attack can form the basis for many different attacks. Some recent results
related to the block withholding are presented in [1,27–29].

A number of research papers address the issue of block withholding and propose
different approaches to prevent this kind of attack. According to [30], the defense meth-
ods can be divided in the following categories: methods that adjust reward distribution,
methods that adjust the internal mining mechanism, and methods relying on credit level
classification. For an overview of the defense mechanisms against block withholding, we
point to [14,30–32].

Symmetry 2023, 15, 924 6 of 29

3. A Variant of the Green Pool Mining

This section proposes a variant of the green pool mining reported in [4]. The proposed
variant supports adjusting the difficulty of the consensus protocol puzzle and preserves
reduced energy consumption and resistance against certain malicious activities of the
miners within public pool mining. The approach is based on an idea to separate the puzzle-
solving process between miners and the pool manager, which is feasible due to the two-
dimensional nature of the required resources, so that neither miners nor the pool manager
are able to solve the puzzle independently. We assume that: (i) the consensus puzzle
requires both energy and memory resources in order to be efficiently solved; (ii) miners
contribute the energy during the puzzle solving; and (iii) the pool manager contributes the
memory for the puzzle solving.

The proposed pool mining approach is based on the following:

- The consensus puzzle is based on the cryptanalytic recovering of an internal state of a
stream cipher;

- Correctness of the miners’ work is controlled using random sampling of the computa-
tions submitted to the pool manager (PM);

- The resistance against certain attacks is based on the splitting of the resources that is
necessary for efficient solving of the puzzle problem, i.e., a miner should employ only
the energy resources;

- The lightweight implementation of the iterative recalculation is achieved through a
lightweight stream cipher.

3.1. Cryptographic Puzzles for Consensus Protocol and Control of Its Difficulty

As the cryptographic puzzle for the consensus protocol, the proposal employs re-
covering the internal state of a keystream generator given its output segment. In stream
cipher systems, the considered keystream generator yields the sequence, called a keystream
sequence, for encryption of plaintext. The considered keystream generator is a finite state
machine that consists of the following three parts [33]: (i) the internal state Xt, (ii) state
transition function f (·), and (iii) output function g(·). Assuming that the internal state is
an L-dimensional binary vector and that the keystream sequence is a binary sequence {yi}i,
we have the following:

Xt = [x(t)i]Li=1, t = 0, 1, . . . ,

Xt+1 = f (Xt), t = 0, 1, 2, (1)

where X0 denotes the initial internal state and

Yt = g(Xt) = g(f (Xt−1), t = 1, 2, (2)

The considered puzzle problem is as follows: given an L-dimensional segment Yt of
the keystream sequence and knowing certain bits of the internal state Xt, recover the entire
internal state.

The difficulty of the puzzle depends on the number of known bits of Xt, and assuming
that the keystream generator is such that any pattern of the same number of known bits
implies the same difficulty, for simplicity we can assume that the known bits are the first
d bits. In order to control the difficulty of the puzzle, we pre-specify a certain set D of
the parameter d. Figure 1 illustrates the puzzle problem. As a particular stream cipher,
the lightweight ones, such as Grain [34] or some security-enhanced ones (see [35–37] for
example), could be employed.

Symmetry 2023, 15, 924 7 of 29

internal state

Xt

output function
g(Xt)

state transition function
Xt = f(Xt-1)

0110001011001101

keystream sequence

known
bits of

Xt

?

Figure 1. Puzzle problem: recovering the internal state of a keystream generator given the keystream se-
quence.

3.2. Control of the Miners

An important issue regarding the pool mining is the PM’s control of the miners’
work correctness. Without appropriate control, a dishonest miner could claim fake hard
dedicated work. As an appropriate approach, this paper proposes a simple method for
checking the correctness of a miner’s work through periodical audits of a random sample
of the results that a miner submits to the pool manager. We assume that a miner submits
incorrect data at a rate of r < 1 and that PM checks the submitted data at a rate of p < r.
We will show that this approach provides efficient detection of miners that submit incorrect
data to the PM.

Design

The pool mining system consists of two entities: the pool manager (PM) and pool
miners. The PM possesses computational and memory resources. The computational
resources of the PM are for the PM’s evaluations, and memory resources are rented out to
the pool miners. The memory resources of the PM contain certain advances in specified
table. The computational and memory resources of the PM could be considered as the
PM cloud. The PM communicates with the pool miners through the dedicated gate. The
main role of the pool miners is to perform certain evaluations that are required for solving
the consensus protocol puzzle and, when considering the pool mining setting, assumes
that only the PM could complete puzzle solving. Accordingly, pool miners require only
computational resources but, as the pool mining participants, they also should support
the PM by renting non-overlapping parts of the memory resources of the PM. The design
setting assumes that certain miners could have own tables in order to perform malicious
activities.

A mining pool is formed and initialized during the registration phase when the pool
manager registers all miners interested in joining and contributing their mining work to
the pool. In this phase, each miner declares the size of the sub-table they support, i.e., they
rent it from the pool manager, and they get informed about the reward for the pool mining
contribution. The architectural framework is provided in Figure 2.

Symmetry 2023, 15, 924 8 of 29

Processor
Processor

Hidden Table

Pool
Manager

Miner Type A
joins pool and rents a table Miner Type B

joins pool, rents a table, and hides its own table

Communications Gate / Buffer

Cloud of Tables

Tables
for the

difficulty 1

Tables
for the

difficulty i

Tables
for the

difficulty j

. . .

Figure 2. Pool mining architectural framework.

Communication between the pool manager and the miners is carried out through the
communications gate with a buffer for accepting the results of the iterative re-encryption
that miners send. More precisely, a miner writes the re-encryption result to the buffer, and
afterwards, the pool manager reads this value for further processing, clearing the buffer.
The pool manager periodically checks the validity of the results submitted by the miners
as the way of controlling the correctness of their work. If the analyzed results are indeed
obtained through recursive evaluations, the pool manager grants a share as a reward for
the miner’s work on the current block.

Table 1 provides an overview of the notations used throughout the paper. The mining
procedures for the pool miner and pool manager are described in Algorithms 1 and 2, respec-
tively.

Table 1. Table of frequently used notation.

Notation Definition

V = {v1, v2, ..., vN} Pool of N miners
VH Sub-pool of honest miners
VD Sub-pool of dishonest miners
qi Computing rate (power) of the miner vi, i = 1, 2, . . . , N

d ∈ D Puzzle difficulty
PM Pool manager
m(d)

i Memories at PM, i = 1, 2, . . . , N(d), d ∈ D

t(d)i
Parameter of the puzzle-solving problem (time-memory trade-off

parameter) employing memory m(d)
i

b Block of transactions
n Nonce

Encpub(·) Encryption with the public key pub of PM
Enc−1

sec (·) Decryption with the secret key sec of PM
h(·) hash function

Xt = [x(t)i]`i=1 `-bit state of keystream generator
Yt `-bit segment of the keystream sequence

f (·) The state transition function that maps Xt into Xt+1
g(·) The output function that maps Xt into Yt

δ Computing (energy) cost of the encryption employed in the puzzle

Symmetry 2023, 15, 924 9 of 29

Table 1. Cont.

Notation Definition

∆ Expected time slot block verification
F0 Flag indicating that mining should continue

Fshare Flag indicating a share solution is detected
Fsolution Flag indicating a puzzle solution is detected

FA Flag indicating that mining of the current block should be canceled

Algorithm 1 depicts the steps performed by a miner during the mining process.
Initially, the miner selects a random nonce value to compute the hash value of the block.
Subsequently, the miner chooses a prefix of the hash value with length ` to serve as
the initial segment of the keystream sequence. After these preliminary steps, the miner
performs the following operations repeatedly: The miner initializes the first d bits of the
previous keystream sequence; then, with probability r, the miner either initializes the
current keystream sequence with a random binary vector or uses the previous keystream
sequence along with the state transition function and output function to initialize the
current sequence. Then, the miner encrypts the sequence with the public key of the pool
manager and sends it to the manager. Based on the response received from the manager,
the miner takes the following actions:

• If the answer is Fsolution, the miner sends the encrypted nonce to the manager;
• If the answer is F0 or Fshare, the miner continues with the mining process;
• If the answer is FA, the miner terminates the current mining session and starts a

new one.

Algorithm 1 The mining procedure of a MinerPool.

1: procedure MINERMINING(block b, difficulty d)
2: n← RANDOMNONCEVECTOR()
3: Y← Pre f ix`(h([b||n]))
4: Y0 ← Y
5: t← 1
6: while t ≤ maxi{t

(d)
i } do

7: Set the first d bits of Yt−1 to 1
8: rnd← RANDOM(0, 1)
9: if rnd < r then

10: Yt ← RANDOMBINARYVECTOR()
11: else
12: Yt ← g(f (Yt−1))
13: end if
14: c(enc) ← Encpub(Yt)

15: f lag←SENDTOPM(c(enc))
16: if f lag = Fsolution then
17: SENDNONCETOPM(Encpub(n)) . Mining is complete
18: break
19: end if
20: if f lag = F0 ∨ f lag = Fshare then
21: continue . Continue mining
22: end if
23: if f lag = FA then
24: abort . Mining is aborted
25: end if
26: end while
27: end procedure

Symmetry 2023, 15, 924 10 of 29

Algorithm 2 describes the actions performed by the pool manager during the mining
process. The pool manager waits for messages from the miners and decrypts them using
their private key. If it is not the first message from the miner, the manager checks the
correctness of the received value with probability p. If the value is invalid, the manager
makes a note of it. The manager then searches for the received value in the second columns
of all TMTO tables.

Algorithm 2 The mining procedure of a pool manager.

1: procedure POOLMANAGERMINING(block b, difficulty d)
2: t← 1
3: while t ≤ maxi{t

(d)
i } do

4: c(enc) ← RECEIVEFROMMINER()
5: Yt ← Enc−1

s (c(enc))
6: if t > 1 then
7: rnd← RANDOM(0, 1)
8: if rnd < p then
9: if Yt 6= g(f (Yt−1)) then . Check correctness of miner’s work

10: w← w + 1
11: end if
12: end if
13: end if
14: t← t + 1
15: Compare Yt using all tables {m(d)

i }i

16: if Yt equal to the second column in j-th row of table m(d)
i then

17: SENDFLAGTOMINER(Fsolution)
18: Encpub(n)← RECEIVENONCEFROMMINER(())
19: Get n from Encpub(n)
20: c← Pre f ix`(h([b||n]))
21: X0 ← the j-th element of the first column of m(d)

i
22: t← 0
23: repeat
24: t← t + 1
25: Xt = g(f (X̂t−1))
26: until Xt = Y0
27: Publish block with the solution Xt−1 . Because Y0 = g(f (Xτ−1))
28: break
29: end if
30: if w = 0 then
31: SENDFLAGTOMINER(Fshare)
32: continue
33: end if
34: if A block was published on the network then
35: SENDFLAGTOMINER(FA)
36: break
37: end if
38: SENDFLAGTOMINER(F0)
39: end while
40: end procedure

If the value is found in a table, the miner has found the solution and the row where the
value was found contains the solution. The manager sends the Fsolution flag to the miner and
waits for the nonce value. Once the manager receives the nonce, they look for the solution
in the specific row by obtaining the first element of the row, denoted as X0, and repeatedly
apply the state transition and output functions on the previous X value (starting with X0)
to reconstruct the elements of the row. If the found value Xt equals the value received from

Symmetry 2023, 15, 924 11 of 29

the miner, then the solution for the mining problem is Xt−1. Using that solution, the pool
manager completes the block and publishes it.

If the manager does not find the received value in any of the tables, they check if the
miner sent an invalid value. If no invalid values were received, the manager sends the
Fshare flag to the miner. If a new block was published on the network in the meantime, the
manager sends the FA flag to the miner, indicating that the current mining job must be
aborted. Otherwise, the manager sends the F0 flag, instructing the miner to continue mining.

3.3. Comparison with PoW

This section compares certain underlying ideas of the proposal with traditional PoW-
based consensus protocols.

3.3.1. Cryptographic Puzzle and the Difficulty

The cryptographic puzzle in PoW consensus protocols is based on the cryptographic
hashing problem, and the difficulty of this problem is determined by the required length
of the pre-specified prefix of the hash result. It is assumed that the most efficient way to
solve a hash puzzle is the exhaustive search. The approach in this paper is different. The
puzzle problem is a crypt-analytic problem of recovering the internal state of a keystream
generator with the assumption that the best technique for finding the puzzle solution is the
time-memory trade-off type that is an adaptation of the one reported in [38]. The puzzle
difficulty is controlled by pre-setting the internal state by a certain number of known bits.

3.3.2. Architecture

Traditional public blockchain architectures are not designed to provide specific resis-
tance against certain malicious activities of miners or groups of colluding miners. On the
other hand, this paper proposes a method for pool mining that ensures a higher level of
resistance against some well-known blockchain attacks that target the incentive layer, i.e.,
selfish mining and block withholding attacks. The proposed pool mining method splits the
resources necessary for solving the consensus puzzle between the pool manager and the
miners, and protects the system against the aforementioned attacks in that way.

3.3.3. Control of Miner’s Work

In standard PoW pool mining, the correctness control of miners’ work is based on the
specification of a sub-puzzle of lower difficulty, which is solved during solving the full
PoW puzzle. The correctness control in our approach has to be different, as it does not
rely on a sub-puzzle solving. Instead, the pool manager periodically checks some random
sample of the results miners submitted as their contribution.

4. Probability of Puzzle Solving and Detection of Dishonest Miners

A malicious miner could submit some random values to the pool manager instead
of valid results obtained through iterative computations, and so the PM should audit
miners’ work and submissions. We suppose that the PM selects outputs from a miner for a
validity check with probability p and that a miner submits incorrect data to the PM with
probability r.

Assumption 1. Table dimensions |m(d)
i | << 2` and the parameters t(d)i are such that the collisions

that are consequence of the birthday paradox do not exist in tables m(d)
i , i = 1, 2, ..., N(d), d ∈ D.

Lemma 1. Assuming that all miners from the sub-pool of honest miners vH always send valid
results to the pool manager and that the sub-pool of dishonest miners vD sends valid values with
rate 1− r, the probability Prwin

pool that the pool will accomplish the inversion with the parameter `
within the time slot ∆ is:

Symmetry 2023, 15, 924 12 of 29

Prwin
pool =

∆ ∑N(d)

i=1 |m
(d)
i |t

(d)
i

2`δ
[(∑

vi∈vH

qi) + (1− r) ∑
vi∈vD

qi] . (3)

Proof. The candidate that can be inverted could appear within the set of candidates
submitted by honest miners, or it can appear in the set of candidates submitted to the PM
from the sub-pool of dishonest miners. Within time slot ∆, a miner vi sends qi/δ candidates,
i = 1, 2, . . . , N to the pool manager. Provided that the miners from the sub-pool vH send

genuine candidates, the pool manager collects a total of
∆ ∑vi∈VH

qi
δ candidates. On the other

hand, the sub-pool of dishonest miners provides (1− r)
∆ ∑vi∈VD

qi
δ candidates. The pool

manager tries to perform an inversion of each received candidate and for that purpose uses

a joint table implicitly containing ∑N(d)

i=1 |m
(d)
i |t

(d)
i inversion pairs. Thus, the probability of

finding the inverse of a candidate is 2−` ∑N(d)

i=1 |m
(d)
i |t

(d)
i . Accordingly, we have the lemma

statement.

Proposition 1. Assuming that a malicious miner submits incorrect data at rate r and that the PM
checks validity of the data at rate p, the probability pdetect that the PM will detect malicious activity
of the miner after n submissions is equal to

pdetect = 1− (1− r)np . (4)

Proof. Receiving n candidates for the puzzle solution implies that the PM has performed
np random checks of the data validity. The probability that all checks have been performed
on valid data and none on invalid data is (1− r)np. Consequently, the probability that one
or more invalid values are detected is equal to 1− (1− r)np.

5. Defense Mechanism against Block Withholding and Selfish Mining

In this section, we discuss the defense mechanism and resilience of the proposed pool
mining approach against a dishonest miner or colluded group of dishonest miners that
engage in block withholding or selfish mining attacks against the pool. We analyze the
probability of a successful attack Prattack and the corresponding success rate ρ, as well as
the probability Prwin

pool that the pool will find the inverse within the given time slot ∆.
The pool of miners could contain a number of malicious ones. These miners could

be with or without their own memory. Furthermore, they could act autonomously or as a
group of attackers. Accordingly, this section considers the resistance against three types of
attackers: (i) miners without memory; (ii) miners with memory; and (iii) groups of miners
that could contain miners without memory and miners with memory.

Providing that the parameters are adequately chosen, the following analysis shows
that the resistance of the pool against the two attacks can be arbitrarily high.

For simplicity of notation, in this section we assume that mi, ti, and N correspond to
m(d)

i , t(d)i , and N(d), respectively, d ∈ D.

5.1. Attack of a Miner without Own Table

An attacker without their own memory could not use the rented one because it is
under the exclusive control of the PM. We assume that the consensus puzzle is hard and
that it can not be efficiently solved by applying an exhaustive search; instead, it requires
the employment of a TM-TO approach. Nevertheless, a miner without their own memory
could try to solve the puzzle using an exhaustive search. Accordingly, we should estimate
the probability that the miner could solve the puzzle within the expected time slot. The
miner could employ the following attacking approach.

Attacking Approach 1

Symmetry 2023, 15, 924 13 of 29

• Scenario 1.1: After each evaluation of cenc, the miner first checks whether the puzzle
solution has been reached. If the answer is positive, the miner keeps the solution and
sends to the PM the next iteration of the evaluation;

• Scenario 1.2: If the miner receives the flag Fsolution from PM, they perform t∗ ≤ t
iterative re-evaluations trying to guess the puzzle solution before sending the nonce
to the PM.

Theorem 1. The success rate of a miner vi ∈ VD without their own table after Attacking Approach
1 is upper-bounded by

ρi <
qi(∆ + t∗)

∆(∑N
i=1 |mi|ti)[(∑vi∈vH

qi) + (1− r)∑vi∈vD
qi]

(5)

Proof. The probability that any single hypothesis on the inversion appears as the correct
one is equal to 2−`. Taking into account the computational power of the miner that
performs the attack and the computational cost of each hypothesis check, the number of
the hypotheses that could be checked within a time slot of duration τ is equal to qiδ

−1τ.
Accordingly, the probabilities of the success of Attacking Approach 1 are upper-bounded
by qiδ

−1∆2−` and qiδ
−1t∗2−` for Scenario 1.1 and 1.2, respectively, considering as well that

the additional time slot t∗ is not always available. Accordingly, we obtain:

Prattack1 <
qi(∆ + t∗)

δ2`
(6)

Combining the previous with Lemma 1, we obtain

ρi <
qi(∆ + t∗)

δ2`
[
∆ ∑N

i=1 |mi|ti

2`δ
[(∑

vi∈vH

qi) + (1− r) ∑
vi∈vD

qi]]
−1

which yields the theorem statement.

5.2. Attack of a Miner with Own Memory

A malicious miner vi ∈ VD , which hides their own table m∗i , could employ the
following approach.

Attacking Approach 2

• Scenario 2.1: After each evaluation of cenc, the miner first checks whether the puzzle
solution exists in their own table. If the answer is positive, the miner keeps the solution
and sends to the PM the next iteration evaluation.

• Scenario 2.2: If the miner receives the flag Fsolution from the PM, the miner performs
t∗ ≤ t iterative re-evaluations and checks their own table to try and find the puzzle
solution before sending the nonce to the PM.

Theorem 2. The success rate of a miner vi ∈ VD with their own table after Attacking Approach 2
is upper-bounded as follows:

ρi <
(∆ + t∗)qi|m∗i |t∗i

∆(∑N
i=1 |mi|ti)[(∑vi∈vH

qi) + (1− r)∑vi∈vD
qi]

(7)

Proof. The two-column table mi is generated in the following way. For each table row: (1)
the first element is randomly selected; (2) the value is iteratively encrypted t times; and (3)
the second element is set to the value obtained after t re-encryptions performed in step (2).
Provided that |mi| << 2` and t are such that they ensure there are no repetitions appearing

Symmetry 2023, 15, 924 14 of 29

as a consequence of the birthday paradox, table mi can be used to find |mi|t inverses. Thus,
the inversion capacity αi of the miner vi is:

αi = 2−`|m∗i |t∗i , i = 1, 2, ..., N

Consequently, if a miner vi employs ν different nonces, the probability of successfully
performing at least one inversion is αiν. If the computing power is equal to qi and the
computing cost is δ, for the time slot ∆, the following applies:

ν =
qi∆
δ

It follows that the probability Prwin that miner vi successfully finds the inverse within
the time slot ∆ is equal to:

Prwin = 2−`
qi∆
δ
|m∗i |t∗i . (8)

Thus, the probability of success in Scenario 2.1 and 2.2 is

Pr <
τqi|m∗i |t∗i

2`δ
(9)

where τ = ∆ and τ = t∗ for Scenario 2.1 and 2.2, respectively, considering as well that
the additional time slot t∗ is not always available. The sum of these probabilities yields
the following probability of success Prattack2 of a miner vi ∈ VD with their own table after
Attacking Approach 2 is upper-bounded as follows:

Prattack2 <
(∆ + t∗)qi|m∗i |t∗i

2`δ
(10)

Combining the above with Lemma 1 gives the theorem statement.

5.3. Attack of a Group of Miners

A group of malicious miners could establish a sub-pool in which they join their own
tables and share outcomes of the re-evaluations. Note that this group of miners could
consist of the ones with their own tables and the miners without their own tables. Figure 3
illustrates this attacking approach.

Cloud of Tables

Pool
Manager

Gate

Sub-Pool of Honest
Type A Miners

Sub-Pool of Dishonest
Type A and B Miners

Figure 3. Model of the attack performed by a group of malicious miners.

Symmetry 2023, 15, 924 15 of 29

Attacking Approach 3

Assumption 2. A group of malicious miners establish a sub-pool vD of attackers by joining their
own tables and opening the joint table to all attackers. The malicious sub-pool consists of the
group of miners vD1 with their own tables and a group vD0 of the ones without their own tables,
vD = vD1

⋃
vD0 .

• Scenario 3.1: After each evaluation of cenc, the miner first checks whether the puzzle
solution exists in the joint table of the pool attackers. If the answer is positive, the
miner keeps the solution and sends to PM the next iteration evaluation;

• Scenario 3.2: If the miner receives the flag Fsolution from the PM, the miner performs
t∗ ≤ t iterative re-evaluations and checks the joint table, trying to guess the puzzle
solution before sending the nonce to the PM.

Theorem 3. The success rate of a sub-pool of dishonest miners vi ∈ VD after Attacking Approach
3 is upper-bounded is as follows:

ρattack3 <
(∆ + t∗)(∑j∈vD

qj)∑j∈vD
|m∗j |t∗j

∆(∑N
i=1 |mi|ti)[(∑vi∈vH

qi) + (1− r)∑vi∈vD
qi]

Proof. A group of dishonest miners can generate
∆ ∑vi∈vD

qi
δ candidates within the time slot

∆. We assume that colluded malicious miners make all their tables available to the group for
the inversion check and that a dishonest miner contributes with computation power q∗i . The
tables used in the inversion process implicitly contain ∑vi∈vD

|m∗i |t∗i inversion pairs, and
each candidate generated by the group is a subject of an inversion attempt. Therefore, the
probability of finding the inverse for a candidate is equal to 2−` ∑vi∈vD

|m∗i |t∗i . Furthermore,
the probability Prwin

vD
that the group of dishonest miners successfully finds an inverse within

the time slot ∆ expanded for t∗ is equal to:

Prwin
vD

< 2−`
(∆ + t∗)∑vi∈vD

qi

δ ∑
vi∈vD

|m∗i |t∗i , (11)

where qi, m∗i , t∗ are the parameters of the resources that a dishonest miner vi ∈ vD con-
tributes to malicious tasks, considering as well that the additional time slot t∗ is not always
available. Finally, employment of Assumption 2 and Lemma 1 gives the theorem state-
ment.

6. Experimental Evaluation and Comparison
6.1. Implementation of the Mining Pool

We developed a proof-of-concept implementation of the proposed consensus protocol
and pool mining using the Go language-based Geth client [39], one of the three original
implementations of the Ethereum protocol. Our implementation added the proposed
protocol to the existing consensus protocols in Geth without altering any other elements. It
includes the evaluation function E that serves as the core of the consensus protocol, as well
as the creation and initialization of the TMTO tables with given dimensions, and verification
of the blocks generated using the proposed consensus protocol. We implemented function
E using the lightweight stream cipher Grain [34] for the experimental evaluation. It is worth
noting that the other functionalities of the Geth client, such as block publishing, receiving
new blocks from dedicated miners, and communication with the blockchain network, were
not affected by our integration of the proposed consensus protocol.

The pool manager implementation consists of three components. The first component
facilitates communication with the pool’s miners through remote procedure calls, enabling
the receipt of newly calculated values and nonce values when a solution is found. It also
sends the appropriate flags to miners. The second component communicates with the

Symmetry 2023, 15, 924 16 of 29

blockchain network through standard Geth client functionalities, including sending mined
blocks and receiving new blocks. The third component uses Geth functionalities to create
new blocks, look up the received values in the TMTO table, verify the correctness of miners’
work, and complete mined blocks.

The miners’ implementation uses remote procedure calls to communicate with the pool
manager. Periodically, the miners ask the manager if there is a new block that needs mining.
When the miner receives a block, it selects a random nonce value for the block, calculates
the hash value of the block (with the nonce), and starts calculating new values using the
evaluation function E. The miner then sends the calculated values to the pool manager.
The miners also wait for specific flags from the pool manager and react accordingly by
continuing the value calculation, sending the nonce value to the manager, or aborting the
mining for the current block.

Software for both miners and the pool manager was implemented using the Go
language.

6.2. Experimental Results

We conducted the experiments on a Linux 64-bit platform running on an Intel® Core™
i7-4710MQ CPU at 2.50 GHz with eight cores. To simulate the proposed mining pool, we
utilized Docker [40] software to create three different types of containers: pool manager,
miner, and blockchain network container. The pool manager container comprises the
pool manager software and a Geth instance that the manager uses. The miner container
contains the software that represents the miner, while the blockchain network container
only contains an instance of the Geth client, which simulated the rest of the blockchain
network. Our mining pool in the experiments had 10 miners as members, so we used 10
instances of the miner container to simulate the miners. Depending on the experiment, the
containers were configured to use the proof-of-work protocol or the consensus protocol
proposed in this paper.

We aimed to compare the energy consumption of Ethereum’s standard proof-of-work
consensus protocol with the protocol proposed in our solution. To accomplish this, we
identified the core methods of each consensus protocol that are the most CPU-intensive
and used them to represent the energy consumption of the protocols.

In the proof-of-work algorithm, the core method is HashimotoFull, which calculates the
hash value of the block. This method is repeatedly called during the mining process, making
it the most CPU-intensive part of the protocol. On the other hand, the evaluation function
E that implements the g(·) function mentioned earlier is the core method of the consensus
protocol used in our proposed method. This is because it is the most CPU-intensive method
in the protocol and is repeatedly called by miners during the mining procedure.

The first part of the experiments included the measuring of the CPU time needed
to execute both of these methods. We have performed the measuring by utilizing the
benchmark feature of the Go programming language. Both of these functions were executed
500,000 times each in order to calculate the average CPU time needed for their execution.
Unlike the proof-of-work consensus where miners simply calculate hash values repeatedly,
the proposed consensus mechanism requires miners to search the last column of the TMTO
table for the most recent value that they have calculated. This represents an additional usage
of the CPU resource that is not present in the proof-of-work consensus. The benchmark
used to calculate the average CPU time of the evaluation function E included the function
used to perform a binary search of the last column of the TMTO table. Therefore, the
evaluation of the function E was conducted in conjunction with the search function. Table 2
shows the benchmark results for both the HashimotoFull method and evaluation function E.
The results make it evident that the HashimotoFull function, which forms the fundamental
component of the proof-of-work algorithm, consumes nearly 2.5 times the CPU time during
execution compared with evaluation function E.

Symmetry 2023, 15, 924 17 of 29

Because both methods are repeatedly called during the execution of consensus pro-
tocols, the second part of our experiments involved counting the number of times each
method was invoked while mining a block using the aforementioned consensus protocols.

Table 2. Benchmark results for the HashimotoFull function and evaluation function E.

Function Iterations Average CPU Time

HashimotoFull 500,000 6365 ns
Evaluation function E 500,000 2454 ns

To determine the frequency at which these specific methods were invoked during
block mining, we conducted tests with varying fixed difficulty levels for each consensus
protocol. To evaluate the proof-of-work algorithm, we mined 100 blocks at fixed difficulties
of 25, 26, and 27 each. However, for the second consensus algorithm, simply counting
the function calls at different difficulty levels was inadequate, as the number of calls is
also influenced by the dimension of the TMTO table used by miners. To address this
issue, we conducted experiments using four tables of varying dimensions for each of the
aforementioned difficulty levels. As a result, we conducted experiments for the second
consensus protocol by mining 100 blocks at each of the fixed difficulty values (25, 26, and 27)
for every corresponding fixed table dimension.

Figure 4 shows a histogram depicting the distribution of the number of calls to the
HashimotoFull method for the proof-of-work consensus protocol with the difficulty set to 26.
The main observation from the histogram is that the number of calls to the HashimotoFull
method is in the order of 106 per block. During the experiment for proof-of-work with a
difficulty of 26, the majority of mined blocks (67 out of 100) required less than 650× 106

calls to the HashimotoFull method. As shown on the histogram, the number of blocks that
require a larger number of calls to the HashimotoFull method is decreasing.

Figure 4. Histogram representing the number of mined blocks compared with the calls of the
HashimotoFull method.

Table 3 presents the minimum, maximum, average, and median number of calls to the
HashimotoFull function required for mining blocks using the proof-of-work algorithm with
fixed difficulties. Initially, the minimum number of calls per block may appear perplexing
as the number of calls for difficulty level 26 is smaller than the number for difficulty level

Symmetry 2023, 15, 924 18 of 29

25. However, this result only indicates that the miner was more fortunate with a block of
difficulty level 26 and found the correct nonce value with the least number of calls to the
HashimotoFull method. The experimental results show that the maximum number of calls
to the HashimotoFull function increases with the difficulty level, which is not unexpected
given that higher difficulties require more computational effort. Moreover, the average and
median number of calls also exhibit an increasing trend with the difficulty level, indicating
that blocks with higher difficulty levels are more challenging to mine.

The results clearly demonstrate that there is a significant increase in the number of calls
to the HashimotoFull function with an increase in mining difficulty, which is unsurprising.

Table 3. Results of the experiments regarding the number of calls of the HashimotoFull function in
the proof-of-work per mined block.

Difficulty Minimum Maximum Average Median

25 388,686 169,457,010 35,826,915.65 25,652,903
26 64,203 238,039,725 64,099,263.27 50,874,196
27 445,186 536,247,913 116,922,745.37 73,640,447.5

The histogram in Figure 5 shows the distribution of specific number of calls to the
evaluation function E for a fixed difficulty of 26 and TMTO table dimensions 211 × 215. The
first difference that can be seen when comparing with the previous histogram is that the
number of calls to the evaluation function E is on the order of 104 calls, which is significantly
lower than the number of calls to the HashimotoFull method in the proof-of-work consensus
protocol. The second difference relates to the sizes of categories in the histogram. The
categories in Figure 5 are smaller compared with the ones in the previous histogram in
order to show a more detailed distribution. If the histogram for the proposed consensus
used the same categories as the one for the proof-of-work consensus, all of the 100 mined
blocks would fall into the first category. The experiment for the proposed consensus with
a fixed difficulty and table dimension showed that the majority of the mined blocks (79
out of 100) required less than 34× 104 calls for the evaluation function E. Similar to the
proof-of-work consensus, the histogram shows that the number of blocks decreases as the
number of calls to E increases.

Figure 5. Histogram representing the number of mined blocks compared with calls of the evaluation
function E.

Symmetry 2023, 15, 924 19 of 29

Table 4 displays the dimensions of the TMTO tables that were utilized for each of the
fixed difficulties, along with the minimum, maximum, average, and median number of calls
in the evaluation function E in relation to the fixed difficulties and table dimensions. The
minimum values for different difficulty levels and table dimensions may seem unexpected,
but this is due to the fact that miners had more luck finding the correct nonce value with
fewer calls in the evaluation function E for certain blocks, similar to what was observed
in the proof-of-work consensus protocol. It can be observed that the maximum, average,
and median values for the specific difficulties increase with the increase in table width
and decrease in table height. This is in line with the consensus protocol, as a wider table
requires more CPU usage for the mining process. Similarly, decreasing the table height
increases the CPU usage as fewer values can be stored in the TMTO table, which requires
miners to perform more calculations. Therefore, an increase in the table width or a decrease
in the table height both result in an increase in CPU usage, which is in accordance with the
consensus protocol. Furthermore, an increase in difficulty generally leads to an increase
in the maximum, average, and median number of calls in the evaluation function E. One
observation is that blocks with a difficulty of 26 and a table size of 210 × 216 were mined
faster than blocks with a difficulty of 25 and a table size of 210 × 215, which may appear
to be counter-intuitive. However, this can be explained by the fact that the table used for
difficulty 26 stores twice as many values as the table used for difficulty 25.

Table 4. Results of experiments regarding the number of calls of evaluation function E per
mined block.

Difficulty Width Height Minimum Maximum Average Median

25

210 215 6712 28,649 46,108.07 30,967
211 214 5097 953,868 181,479.96 107,082
212 213 5963 1,698,475 587,631.42 615,419.5
213 212 4108 3,151,632 1,482,511.68 1,652,551.5

26

210 216 5638 194,241 39,992 28,915.5
211 215 11,983 1,119,677 209,686.83 117,719.5
212 214 13,030 2,112,467 739,251.28 650,157
213 213 25,120 4,691,539 1,946,675.24 1,722,151

27

210 217 6710 155,303 45,492.31 31,970
211 216 13,285 886,329 159,210.19 75,151
212 215 26,940 3,148,764 794,431.39 672,646
213 214 53,845 9,222,343 2,453,612.45 1,486,439

7. Discussion of Experimental Results

The experimental results presented in Section 6 show that the consensus protocol
proposed in this paper requires less computation energy than the traditional hashing-
based PoW. Note that the energy reduction in the considered green mining is the result
of the employment of certain memory resources besides the computational ones. More
precisely, the consensus protocol reduces the computational overhead, and therefore the
energy consumption, as a trade-off with the employment of certain pre-computed tables
for solving the consensus puzzle (see [3,4]) that belongs to a class of the inversion problems.
In particular, if no memory is employed, the protocol puzzle should be solved using an
exhaustive search, i.e., in the same manner as the traditional PoW puzzle. It is important to
notice that the traditional hashing-based puzzle does not provide the possibility of reducing
the exhaustive search operations in exchange for the employment of some memory. In
our approach, the nature of the consensus puzzle is different, and memory employment
provides a substantial reduction of the space that should be exhaustively searched. This
results in a reduction in the energy consumption. In the experiments, we analyzed the
settings with different amounts of allocated memory resources.

Symmetry 2023, 15, 924 20 of 29

First, we identified the most CPU-intensive core methods of each of the consensus
protocols, which are HashimotoFull for the PoW protocol and evaluation function E for our
protocol. We used them to represent and compare the energy consumption of the protocols.
The experiments show that HashimotoFull, which is the core function for PoW, is nearly 2.5
times more CPU intensive and thus more energy demanding than the evaluation function
E. As the overall energy consumption depends on the number of calls to HashimotoFull
and evaluation function E, we analyzed how many times these functions were executed
during the block mining process. On average, PoW required 36× 106 calls to HashimotoFull
in to order to mine a block when the difficulty parameter was set to 25. With difficulty 26,
the average number of calls was 64× 106, and with a difficulty of 27, the average number
of calls was 117× 106. The experiments show that, for block difficulty 25, depending on
the invested memory, our consensus protocol required on average between 46× 103 and
1.5× 106 calls for the evaluation function E. For difficulty 26, it required on average between
40× 103 and 2× 106, and for difficulty 27, between 45× 103 and 2.5× 106. Keeping in
mind that HashimotoFull requires more CPU time (see Table 2) and thus more energy we
obtain that the block mining process in PoW is between two and three orders of magnitude
more expensive than our protocol for the considered block difficulties. Table 5 summarizes
the results of the experiments regarding the energy reduction of the protocol proposed in
this paper in comparison with the traditional hashing-based PoW.

Table 5. Comparison of CPU times for PoW and PoIC per mined block.

Difficulty PoW PoIC Table Size PoW CPU
Time (ms)

PoIC CPU
Time (ms)

25 36× 106

46× 103 210 × 215

2.3× 105

1.1× 102

181× 103 211 × 214 4.5× 102

588× 103 212 × 213 1.4× 103

1.5× 106 214 × 212 3.6× 103

26 64× 106

40× 103 210 × 216

4.1× 105

0.9× 102

210× 103 211 × 215 5.1× 102

739× 103 212 × 214 1.8× 103

2× 106 214 × 213 4.8× 103

27 117× 106

45× 103 210 × 217

7.4× 105

1.1× 102

159× 103 211 × 216 3.9× 102

794× 103 212 × 215 1.9× 103

2.5× 106 214 × 214 6× 103

8. Conclusions

This paper proposes a variant of the recently reported blockchain pool mining [4],
which employs energy and memory resources, and yields high resistance against certain
malicious activities of miners within public pool mining. The proposed variant provides
adaptability to a number of different execution scenarios that require a different level
of difficulty in the consensus protocol puzzle and a reduction in energy consumption
in comparison with standard PoW blockchains at the expense of using some additional
memory resources. The main features of the proposed pool mining approach are: (i) the
consensus puzzle is based on the crypt-analytic recovering of the internal state of a stream
cipher that also supports different difficulties of the puzzle; (ii) control of miners’ work is
based on checking random samples of the results that are sent to the pool manager; (iii) the
resiliency against block withholding attacks and selfish mining appears as a consequence
of the separation of the resources required for efficient puzzle solving, i.e., a miner should
employ only the energy resources and the PM controls the memory necessary for efficient
puzzle solving; (iv) The lightweight implementation of the iterative recalculation is achieved
through the employment of a lightweight stream cipher. The experimental evaluation of the
energy consumption shows that it is substantially reduced in comparison with a traditional
PoW hashing-based consensus protocol.

Symmetry 2023, 15, 924 21 of 29

Author Contributions: Conceptualization, M.J.M.; methodology, M.J.M.; software, M.T.; validation,
M.J.M., M.T. and M.K.; formal analysis, M.J.M.; writing—original draft preparation, M.J.M., M.T. and
M.K.; writing—review and editing, M.J.M., M.T. and M.K.; supervision, M.J.M.; project administration,
M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the project AI4TrustBC from the Science Fund of Serbia and
the project EU H2020 SMART4ALL-BC4GRID grant 872614.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The appendix contains histograms that display the results of all experiments that we
conducted. Figures A1 and A2 illustrate the distribution of the number of calls to the
HashimotoFull method for the proof-of-work protocol with the difficulties set to 25 and 27,
respectively. The remaining histograms (from Figures A3–A13) show the distribution of the
specific number of calls to the evaluation function E for various fixed difficulties and TMTO
table dimensions of the proposed protocol. These results align with our paper’s findings,
indicating that the proposed solution requires fewer computational resources than the
proof-of-work protocol. Notably, the results also confirm that the required computational
power increases as the TMTO tables’ height decreases and width increases.

Figure A1. Histogram representing the number of mined blocks compared with the calls of the
HashimotoFull method for a fixed difficulty of 25.

Symmetry 2023, 15, 924 22 of 29

Figure A2. Histogram representing the number of mined blocks compared with the calls of the
HashimotoFull method for a fixed difficulty of 27.

Figure A3. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 25 and table dimension 210 × 215.

Symmetry 2023, 15, 924 23 of 29

Figure A4. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 25 and table dimension 211 × 214.

Figure A5. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 25 and table dimension 212 × 213.

Symmetry 2023, 15, 924 24 of 29

Figure A6. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 25 and table dimension 213 × 212.

Figure A7. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 26 and table dimension 210 × 216.

Symmetry 2023, 15, 924 25 of 29

Figure A8. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 26 and table dimension 212 × 214.

Figure A9. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 26 and table dimension 213 × 213.

Symmetry 2023, 15, 924 26 of 29

Figure A10. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 27 and table dimension 210 × 217.

Figure A11. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 27 and table dimension 211 × 216.

Symmetry 2023, 15, 924 27 of 29

Figure A12. Histogram representing the number of mined blocks compared with the calls of the
evaluation function E for a fixed difficulty of 27 and table dimension 212 × 215.

Figure A13. Histogram representing the number of mined blocks compared to calls of evaluation
function E for fixed difficulty 27 and table dimension 213 × 214.

References
1. Qin, R.; Yuan, Y.; Wang, F.-Y. Optimal Block Withholding Strategies for Blockchain Mining Pools. IEEE Trans. Comput. Soc. Syst.

2020, 7, 709–717. [CrossRef]
2. Kang, H.; Chang, X.; Yang, R.; Misic, J.; Misic, V.B. Understanding Selfish Mining in Imperfect Bitcoin and Ethereum Networks

with Extended Forks. IEEE Trans. Netw. Serv. Manag. 2021, early access. [CrossRef]
3. Mihaljevic, M.J. A Blockchain Consensus Protocol Based on Dedicated Time-Memory-Data Trade-Off. IEEE Access 2020, 8,

141258–141268. [CrossRef]

http://doi.org/10.1109/TCSS.2020.2991097
http://dx.doi.org/10.1109/TNSM.2021.3073414
http://dx.doi.org/10.1109/ACCESS.2020.3013199

Symmetry 2023, 15, 924 28 of 29

4. Mihaljević, M.J.; Wang, L.; Xu, S.; Todorovixcx, M. An Approach for Blockchain Pool Mining Employing the Consensus Protocol
Robust against Block Withholding and Selfish Mining Attacks. Symmetry 2022, 14, 1711. [CrossRef]

5. Rosenfeld, M. Analysis of bitcoin pooled mining reward systems. arXiv 2011, arXiv:1112.4980.
6. Li, C.T.C.; Zheng, X.Y.Z.; Chen, Z. Cooperative Mining in Blockchain Networks With Zero-Determinant Strategies. IEEE Trans.

Cybern. 2020, 50, 4544–4549.
7. Li, W.; Cao, M.; Wang, Y.; Tang, C.; Lin, F. Mining Pool Game Model and Nash Equilibrium Analysis for PoW-Based Blockchain

Networks. IEEE Access 2020, 8, 101049–101060. [CrossRef]
8. Tang, C.; Wu, L.; Wen, G.; Zheng, Z. Incentivizing Honest Mining in Blockchain Networks: A Reputation Approach. IEEE Trans.

Circuits Syst. II Express Briefs 2020, 67, 117–121. [CrossRef]
9. Yu, J.; Kozhaya, D.; Decouchant, J.; Esteves-Verissimo, P. RepuCoin: Your Reputation is Your Power. IEEE Trans. Comput. 2019, 68, 1225–1237.

[CrossRef]
10. Chen, Z.; Sun, X.; Shan, X.; Zhang, J. Decentralized Mining Pool Games in Blockchain. In Proceedings of the 2020 IEEE

International Conference on Knowledge Graph (ICKG), Nanjing, China, 9–11 August 2020; pp. 426–432.
11. Lasla, N.; Al-Sahan, L.; Abdallah, M.; Younis, M. Green-PoW: An energy-efficient blockchain Proof-of-Work consensus algorithm.

Comput. Netw. 2022, 214, 109118. [CrossRef]
12. Qu, X.; Wang, S.; Hu, Q.; Cheng, X. Proof of Federated Learning: A Novel Energy-Recycling Consensus Algorithm. IEEE Trans.

Parallel Distrib. Syst. 2021, 32, 2074–2085. [CrossRef]
13. Todorović, M.; Matijević, L.; Ramljak, D.; Davidović, T.; Urošević, D.; Krüger, T.J.; Jovanović, D. Proof-of-Useful-Work: BlockChain

Mining by Solving Real-Life Optimization Problems. Symmetry 2022, 14, 1831. [CrossRef]
14. Wen, Y.; Lu, F.; Liu, Y.; Huang, X. Attacks and countermeasures on blockchains: A survey from layering perspective. Comput.

Netw. 2021, 191, 107978. [CrossRef]
15. Cheng, J.; Xie, L.; Tang, X.; Xiong, N.; Liu, B. A survey of security threats and defense on Blockchain. Multimed. Tools Appl. 2021,

80, 30623–30652. [CrossRef]
16. Chaganti, R.; Boppana, R.V.; Ravi, V.; Munir, K.; Almutairi, M.; Rustam, F.; Lee, E.; Ashraf, I. A Comprehensive Review of Denial

of Service Attacks in Blockchain Ecosystem and Open Challenges. IEEE Access 2022, 10, 96538–96555. [CrossRef]
17. Kannengießer, N.; Lins, S.; Sander, C.; Winter, K.; Frey, H.; Sunyaev, A. Challenges and common solutions in smart contract

development. IEEE Trans. Softw. Eng. 2021, 48, 4291–4318. [CrossRef]
18. Sato, T.; Imamura, M.; Omote, K. Threat Analysis of Poisoning Attack Against Ethereum Blockchain. In Proceedings of the IFIP

International Conference on Information Security Theory and Practice WISTP 2019: Information Security Theory and Practice,
Paris, France, 11–12 December 2019; LNCS: Berlin, Germany, 2020; Volume 12024, pp. 139–154.

19. Mallah, R.A.; Lopez, D. Blockchain-based Monitoring for Poison Attack Detection in Decentralized Federated Learning. In
Proceedings of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME),
Malé, Maldives, 16–18 November 2022.

20. Matzutt, O.; Hiller, R.; Henze, J.; Ziegeldorf, M.; Mullmann, J.H.; Hohlfeld, D.; Wehrle, K. A quantitative analysis of the impact of
arbitrary blockchain content on bitcoin. In Proceedings of the 22nd International Conference on Financial Cryptography and
Data Security (FC), Nieuwpoort, Curacao, 26 February–2 March 2018; Springer: Berlin/Heidelberg, Germany, 2018.

21. Leng, J.; Zhou, M.; Zhao, J.; Huang, Y.; Bian, Y. Blockchain Security: A Survey of Techniques and Research Directions. IEEE Trans.
Serv. Comput. 2022, 15, 2490–2510. [CrossRef]

22. Guru, A.; Mohanta, B.K.; Mohapatra, H.; Al-Turjman, F.; Altrjman, C.; Yadav, A. Survey on Consensus Protocols and Attacks on
Blockchain Technology. Appl. Sci. 2023, 13, 2604. [CrossRef]

23. Eyal, I.; Sirer, E.G. Majority is not enough: Bitcoin mining is vulnerable. In Proceedings of the International Conference on
Financial Cryptography and Data Security, Christ Church, Barbados, 3–7 March 2014; Springer: Berlin/Heidelberg, Germany,
2014; Volume 8437, pp. 436–454.

24. Dong, X.; Wu, F.; Faree, A.; Guo, D.; Shen, Y.; Ma, J. Selfholding: A combined attack model using selfish mining with block
withholding attack. Comput. Secur. 2019, 87, 101584. [CrossRef]

25. Zhou, C.; Xing, L.; Liu, Q.; Wang, H. Effective Selfish Mining Defense Strategies to Improve Bitcoin Dependability. Appl. Sci. 2022,
13, 422. [CrossRef]

26. Azimy, H.; Ghorbani, A.A.; Bagheri, E. Preventing proof-of-work mining attacks. Inf. Sci. 2022, 608, 1503–1523. [CrossRef]
27. Chen, Y.; Chen, H.; Han, M.; Liu, B.; Chen, Q.; Ren, T. A Novel Computing Power Allocation Algorithm for Blockchain System in

Multiple Mining Pools Under Withholding Attack. IEEE Access 2020, 8, 155630–155644. [CrossRef]
28. Fujita, K.; Zhang, Y.; Sasabe, M.; Kasahara, S. Mining Pool Selection under Block WithHolding Attack. Appl. Sci. 2021, 11, 1617.

[CrossRef]
29. Yu, L.; Yu, J.; Zolotavkin, Y. Game Theoretic Analysis of Reputation Approach on Block Withholding Attack; NSS 2020; LNCS: Berlin,

Germany, 2020; Volume 12570, pp. 149–166.
30. Chen, H.; Chen, Y.; Xiong, Z.; Han, M.; He, Z.; Liu, B.; Ma, Z. Prevention method of block withholding attack based on miners’

mining behavior in blockchain. Appl. Intell. 2022, 1–19. [CrossRef]
31. Zhang, Y.; Lv, X.; Chen, Y.; Ren, T.; Yang, C.; Han, M. FAWPA: A FAW Attack Protection Algorithm Based on the Behavior of

Blockchain Miners. Sensors 2022, 22, 5032. [CrossRef]

http://dx.doi.org/10.3390/sym14081711
http://dx.doi.org/10.1109/ACCESS.2020.2997996
http://dx.doi.org/10.1109/TCSII.2019.2901746
http://dx.doi.org/10.1109/TC.2019.2900648
http://dx.doi.org/10.1016/j.comnet.2022.109118
http://dx.doi.org/10.1109/TPDS.2021.3056773
http://dx.doi.org/10.3390/sym14091831
http://dx.doi.org/10.1016/j.comnet.2021.107978
http://dx.doi.org/10.1007/s11042-020-09368-6
http://dx.doi.org/10.1109/ACCESS.2022.3205019
http://dx.doi.org/10.1109/TSE.2021.3116808
http://dx.doi.org/10.1109/TSC.2020.3038641
http://dx.doi.org/10.3390/app13042604
http://dx.doi.org/10.1016/j.cose.2019.101584
http://dx.doi.org/10.3390/app13010422
http://dx.doi.org/10.1016/j.ins.2022.07.035
http://dx.doi.org/10.1109/ACCESS.2020.3017716
http://dx.doi.org/10.3390/app11041617
http://dx.doi.org/10.1007/s10489-022-03889-3
http://dx.doi.org/10.3390/s22135032

Symmetry 2023, 15, 924 29 of 29

32. Chen, Y.; Chen, H.; Han, M.; Liu, B.; Chen, Q.; Ma, Z.; Wang, Z. Miner revenue optimization algorithm based on Pareto artificial
bee colony in blockchain network. J. Wirel. Com. Netw. 2021, 2021, 146. [CrossRef]

33. Katz, J.; Lindell, Y. Introduction to Modern Cryptography; CRC PRESS: Boca Ratton, FL, USA, 2007.
34. eSTREAM Portfolio of ECRYPT Project. Available online: https://www.ecrypt.eu.org/stream/announcements.html (accessed on

12 April 2023).
35. Oggier, F.; Mihaljević, M.J. An Information-Theoretic Security Evaluation of a Class of Randomized Encryption Schemes. IEEE

Trans. Inf. Forensics Secur. 2014, 9, 158–168. [CrossRef]
36. Mihaljevic, M.J.; Oggier, F. Security Evaluation and Design Elements for a Class of Randomized Encryptions. IET Inf. Secur. 2019, 13, 36–47.

[CrossRef]
37. Mihaljevic, M.J. A Security Enhanced Encryption Scheme and Evaluation of Its Cryptographic Security. Entropy 2019, 21, 701.

[CrossRef]
38. Hellman, M.E. A Cryptanalytic Time-Memory Trade-Off. IEEE Trans. Inf. Theory 1980, IT-26, 401–406. [CrossRef]
39. Ethereum Go Implementation—Geth. Available online: https://github.com/ethereum/go-ethereum (accessed on 12 April 2023).
40. Docker. Available online: https://www.docker.com/ (accessed on 12 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13638-021-02018-x
https://www. ecrypt.eu.org/stream/announcements.html
http://dx.doi.org/10.1109/TIFS.2013.2294763
http://dx.doi.org/10.1049/iet-ifs.2017.0271
http://dx.doi.org/10.3390/e21070701
http://dx.doi.org/10.1109/TIT.1980.1056220
https://github.com/ethereum/go-ethereum
https://www.docker.com/

	Introduction
	Background and Related Work
	Pool Mining
	Green Consensus Protocols Based on Proof-of-Work
	An Overview of Blockchain Attacks
	Attacks and Corresponding Countermeasures Related to the Incentive Mechanism and Pool Mining
	Selfish Mining
	Block Withholding

	A Variant of the Green Pool Mining
	Cryptographic Puzzles for Consensus Protocol and Control of Its Difficulty
	Control of the Miners
	Comparison with PoW
	Cryptographic Puzzle and the Difficulty
	Architecture
	Control of Miner's Work

	Probability of Puzzle Solving and Detection of Dishonest Miners
	Defense Mechanism against Block Withholding and Selfish Mining
	Attack of a Miner without Own Table
	Attack of a Miner with Own Memory
	Attack of a Group of Miners

	Experimental Evaluation and Comparison
	Implementation of the Mining Pool
	Experimental Results

	Discussion of Experimental Results
	Conclusions
	Appendix A
	References

