
Citation: Zhang, S.; Hu, C.; Wang, L.;

Mihaljevic, M.J.; Xu, S.; Lan, T. A

Malware Detection Approach Based

on Deep Learning and Memory

Forensics. Symmetry 2023, 15, 758.

https://doi.org/10.3390/

sym15030758

Academic Editors: Christos Volos

and Jeng-Shynag Pan

Received: 28 December 2022

Revised: 22 February 2023

Accepted: 17 March 2023

Published: 19 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Malware Detection Approach Based on Deep Learning and
Memory Forensics
Shuhui Zhang 1,* , Changdong Hu 1, Lianhai Wang 1, Miodrag J. Mihaljevic 1,2 , Shujiang Xu 1 and Tian Lan 1

1 Qilu University of Technology (Shandong Academy of Sciences), Shandong Computer Science Center
(Na- 5 tional Supercomputer Center in Jinan), Shandong Provincial Key Laboratory of Computer Networks),
Jinan 250014, China

2 Mathematical Institute, The Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
* Correspondence: zhangshh@sdas.org

Abstract: As cyber attacks grow more complex and sophisticated, new types of malware become
more dangerous and challenging to detect. In particular, fileless malware injects malicious code into
the physical memory directly without leaving attack traces on disk files. This type of attack is well
concealed, and it is difficult to find the malicious code in the static files. For malicious processes
in memory, signature-based detection methods are becoming increasingly ineffective. Facing these
challenges, this paper proposes a malware detection approach based on convolutional neural network
and memory forensics. As the malware has many symmetric features, the saved training model can
detect malicious code with symmetric features. The method includes collecting executable static
malicious and benign samples, running the collected samples in a sandbox, and building a dataset of
portable executables in memory through memory forensics. When a process is running, not all the
program content is loaded into memory, so binary fragments are utilized for malware analysis instead
of the entire portable executable (PE) files. PE file fragments are selected with different lengths and
locations. We conducted several experiments on the produced dataset to test our model. The PE file
with 4096 bytes of header fragment has the highest accuracy. We achieved a prediction accuracy of
up to 97.48%. Moreover, an example of fileless attack is illustrated at the end of the paper. The results
show that the proposed method can detect malicious codes effectively, especially the fileless attack.
Its accuracy is better than that of common machine learning methods.

Keywords: memory forensic; deep learning; segment detection; malware detection; memory dump

1. Introduction

With the development of internet technology, malware attacks became more prevalent
and sophisticated. Currently, malware is one of the dominant attack vectors used by
cybercriminals to perform malicious activities [1]. Everyday, the AV-TEST Institute registers
over 450,000 new malicious programs (malware) and potentially unwanted applications
(PUA) [2]. Antivirus products implement static and heuristic analysis technologies to detect
malware. Unfortunately, these approaches became less effective to detect sophisticated
malware that exploits obfuscation and encryption techniques [3]. In particular, fileless
malware attacks are wildly used and cause severe losses. Fileless malware is a type of
malicious software that does not rely on files and leaves no footprint on the computer disk.
It is difficult to detect unknown malicious programs without knowing their signatures.

To combat such threats, much research is carried out in various fields, including deep
learning, memory forensics, number theory, and so on [4–6]. Memory forensics offers
unique insights into the internal state of kernel system and running programs [7]. Memory
has a high potential to contain malicious code from an infection, in whole or in part, even
if it is never written to disk, because it must be loaded in memory to execute [8]. The
analysis target of memory forensics is a memory dump from where the attack traces can

Symmetry 2023, 15, 758. https://doi.org/10.3390/sym15030758 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15030758
https://doi.org/10.3390/sym15030758
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-5017-3207
https://orcid.org/0000-0003-3047-3020
https://doi.org/10.3390/sym15030758
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15030758?type=check_update&version=2

Symmetry 2023, 15, 758 2 of 19

be extracted. By contrast, these traces are not available by the traditional disk analysis
method. During memory analysis, malwares are executed in a sandbox to prevent the
malwares from causing damage to the entire computer system, which is accomplished
by establishing virtual machines. Memory data must be collected in a timely manner
when malware is running on the virtual machine (VM). In this paper, the memory data are
dumped to the disk using the memory dump algorithm for further analysis. In addition
to dumping the memory data, malicious portable executable (PE) files must be extracted
from thousands of memory data as sample data. Bozkir et al. [9] presented an approach to
recognize malware by capturing the memory dump of suspicious processes, which can be
represented as an RGB image. However, collecting malicious memory data in this manner
is inadequate. The extracted process potentially did not load malicious code into memory.
Some malicious processes are injected into new processes to perform malicious actions. In
this case, extracting a single malicious process cannot fully reflect the malicious behavior
of the process. Only extracting a malicious running single process cannot fully reflect the
value of memory analysis. The dataset in this paper takes multiple dumps of memory
images and extracts all processes and DLL data. By close analysis of this information,
benign and malicious data can be classified through a detection platform.

This paper proposes a malicious code detection method. A neural network model is
built to detect sample fragments. The sample fragment’s time cost is reduced compared to
detecting the whole sample. To reduce the problem of crucial data loss caused by sample
fragment detection, we select fragments by detecting different positions and lengths to
determine the appropriate place and size of the detected segments.

The main contributions of this paper are summarized as follows:

• This paper builds a portable executable (PE) file dataset in memory, which extracts
more malicious memory samples in the process. This paper first collects static PE files
from the well-known malicious sample libraries VirusShare and MalShare, which are
widely used by researchers and have high persuasiveness. Then, this paper downloads
the common software from the official Microsoft platform. Finally, it executes the
static samples in running virtual machines and extracts the dynamic samples to create
our dataset;

• We build a model based on the neural network (CNN), and use the model to train
memory segments to achieve accurate detection of malicious code;

• We give an example of fileless malware attack in the paper. Since the dynamic file
dataset is constructed, it has good detection performance for “no file” attacks and
malicious samples that can only be detected in dynamic files.

2. Related Work
2.1. Memory Forensics

The computer forensics approaches are divided into the dynamic and static analysis.
Static analysis is built on the premise of not running the program. It includes the extraction
process of components, instructions, control flow, and function calling of sequence static
code features, such as anomaly detection [10]. Jiang et al. [11] designed a set of fine-
grained binary integrity verification schemes to check the integrity of binary files in virtual
machines. The static analysis method had high sample coverage. Still, a multi-angle
analysis was required to detect malicious code using technologies such as deformation,
polymorphism, code obfuscation, and encryption [12]. Regarding dynamic analysis, most
of the information in the memory was incomplete owing to the paging and replacement
mechanism of the memory. The program did not transfer all the information into the
memory during execution. Only part of the information was moved into the memory first.
Therefore, the complete executable data cannot be obtained.

Furthermore, once a malicious program detects that the virus/Trojan detection tool
was running or using software to obtain the memory, it immediately interrupts the attack
behavior, self-destructs, and erases the attack traces. These self-destruction behaviors put
forward higher requirements for memory data sampling and detection. Otsuki et al. [13]

Symmetry 2023, 15, 758 3 of 19

proposed a method of extracting stack traces from the memory images in a 64-bit Windows
system. They demonstrated the effectiveness of Stealth Loader by analyzing a set of Win-
dows executables and malware protected with Stealth Loader using major dynamic and
static analysis tools. Uroz et al. [14] investigated the limitations that memory forensics
impose to the digital signature verification process of Windows PE-signed files obtained
from a memory dump. These limitations are data incompleteness, data changes caused
by relocation, catalog-signed files, and executable file and process inconsistencies. Cheng
et al. [15] proposed a clustering algorithm that realized the automatic memory data correla-
tion analysis method through analyzing the critical data structure of the operating system.
The main ideas are guaranteeing data accuracy in multi-view extraction and analyzing
memory behavior in a para-synchronous style. Palutke [16] exploited a memory shar-
ing mechanism to detect hidden processes from memory data. They present three novel
methods that prevent malicious user space memory from appearing in analysis tools and
additionally making the memory inaccessible from a security analysts perspective. Wang
et al. [17] adopted the Windows physical memory analysis method based on the KPCR
(Kernel’s Processor Control Region) structure, which solved the problems of the version
judgment and the address translation of the operating system. It became increasingly
challenging to conduct memory forensics using the above methods for the exponentially
increasing malicious codes. It is difficult to detect whether there are malicious behaviors in
a large number of in-memory PE files through professional manual analysis, which makes
it a very challenging research direction.

2.2. Malware Detection

Malicious code detection approaches are popular among network security researchers.
To judge whether the exe file is malicious software, the entire static exe file is dealt with
using a machine learning algorithm [18]. The disadvantage of this method is that if the
amount of data in the dataset was enormous, an oversized load was generated during
the data training process. In the way proposed by Bozkir et al. [9], the binary files of the
malicious samples are converted into images, and the transformed images are classified
by the classifiers support vector machines (SVM), extreme gradient boosting (XGBoost),
and random forest. Marín et al. [19] extracted printable characters from the PE files
for detection through machine learning. Li et al. [20] proposed a CNN-based malware
detection approach. The vgg-16 model was used as their train model in which convolutional
filters were of the size 3 × 3. Zhang et al. [21] proposed a classification method for
malware. The process extracted the semantic structure features of the code based on a data
flow analysis and used graph convolutional networks to detect the semantic structural
features. The detection accuracy of this method was 95.8%. Wadkar et al. [22] proposed
an evolutionary detection method for malware based on the SVM model. The method
proposed by Han et al. [23] analyzes malware based on its structure and behavior.

Subsequently, several classifiers, namely, random forest, decision tree, CNN, and
XGBoost, were used to classify the input data. Huang et al. [24] developed a malware de-
tection method using deep learning and visualization based on Windows API. It generates
static visualizations using static features retrieved from the sample files. Lu XD et al. [25]
proposed an malicious code deep forest (MCDF) detection approach. In the process, binary
files were converted to grayscale images, which were used for training and testing of the
MCDF model.

As discussed above, most research methods used memory data structures and con-
nections between processes for memory forensics and malicious code detection. It is
often tough to find specific malware using these methods. Some previously proposed
methods [5,12,26] analyzed specific memory files; another previously reported way [14]
examines the registry in the memory. A previous study [9] proposed a method that converts
memory files into images for analysis through machine learning. In the existing research
methods, the dataset is basically static data or only a single process file. The malicious
behavior injected into other processes cannot be detected. We extract all processes and DLL

Symmetry 2023, 15, 758 4 of 19

files from memory to detect malicious code, especially fileless attacks. Additionally, we
maximize the creation of memory PE datasets by extracting malicious files from memory.
Finally, we build a deep learning model that fits our data. Typical anti-malware techniques
are mostly based on signatures to determine whether software contains malicious code.
Uroz et al. [14] developed the volatility plugin sigcheck, which recovers executable files
from a memory dump and computes its digital signature (if feasible). They tested it on
Windows 7 x86 and x64 memory dumps. Their method requires capturing the full PE file
and its detection rate gets lower and lower as the code runs. However, by detecting file
fragments, our method is more efficient. By performing several sets of experiments on the
produced dataset, we conclude that the 4096-byte data fragment at the head of the PE file
in the memory is used for detection and the accuracy rate is 97.48%.

3. Memory PE File Extraction Technology
3.1. Memory Analysis

Memory forensics rely on the memory image’s binary file. It is challenging to locate
and analyze the valuable information from the dumped memory image. Although a
process is very similar to a program on the surface, the concept of a process is essentially
different. A program is a static sequence of instructions. The process is a dynamic operation
that contains the sequence of execution and various resources to execute the program. In
Windows memory forensics, the evidence obtained and the order of getting the evidence
for analysis differ according to the different forensics requirements. However, starting
the study with the running processes is often preferred because forensics personnel can
understand which applications are running and what these applications are doing through
the process analysis.

Through a bi-directionally linked list structure ActiveProcessLinks, the windows
system can traverse all the processes running in the system. The key to process analysis
is obtaining the pointer to the bidirectional-linked list of system processes. As shown in
Figure 1.

1. The CR3 content and address translation mode are determined according to the KPCR
structure. The brief process is as follows: KPCR structure -> KPCRB member ->
ProcessorState member -> SpecialRegister member -> CR3 register;

2. PsActiveProcessHead is determined according to the KPCR structure, and the process
is as follows: KPCR structure -> KdVersionBlock -> PsActiveProcessHead;

3. To obtain information about the processes, “PsActiveProcessHead” and “ActivePro-
cessLinks” are used to identify the system processes; thus, a two-way linked list can
be traversed, and all activities of the process can be enumerated.

3.2. Memory Forensics

The dump algorithm of the PE files in memory is shown in Algorithm 1. Since the
memory image file to be dumped is very large, we need to obtain the exact physical address
to dump the required PE file. The process page directory base address obtained in the
memory analysis technology is marked as P. The filename of the changed PE file stored in
the specified file is input into the algorithm. Algorithm 1 can dump the specified PE space
data into the specified file.

Symmetry 2023, 15, 758 5 of 19
Symmetry 2023, 15, x FOR PEER REVIEW 5 of 20

Get PsActiveProcessHead

Get the ActiveProcessLink address of
the system

Get the Eprocess structure of
the system

Traverse to get the
ActiveProcessLinks

addresses of other processes

Get system thread information from
ThreadListHead Get Eprocess structures for other

processes

Get thread information for a process
from ThreadListHead

Peb obtain the processopen
file,environmentvariables, call

dynamic link library information

File mirroring of adynamically link
library

Figure 1. Process information analysis.

3.2. Memory Forensics
The dump algorithm of the PE files in memory is shown in Algorithm 1. Since the

memory image file to be dumped is very large, we need to obtain the exact physical ad-
dress to dump the required PE file. The process page directory base address obtained in
the memory analysis technology is marked as P. The filename of the changed PE file
stored in the specified file is input into the algorithm. Algorithm 1 can dump the speci-
fied PE space data into the specified file.
1. Firstly, locate the page directory table (line1) by the value of the page directory base

address. Read the page directory entry (PDE) in the page directory table and de-
termine whether the directory entry is empty. If the directory entry is not empty,
then mark the page directory entry as D. If D&1 equals 1, then mark the value of
D&0xFFFFF000 as the physical address of the page table specified by the directory
entry as T. If D&1 not equals 1, proceed to the next non-empty page directory entry;

2. Secondly, read the first non-empty page entry of the page table. Page table entries
are marked T, and if T&1 equals 1, mark the value of T&0xFFFFF000 as T as the
physical address of the physical page specified by the page entry. Locate the physi-
cal address in the memory image, read the contents of the physical memory page,
and dump the PE data of a single memory into the specified file in the memory im-
age through the specified physical address. The algorithm (from lines 2 to 15)
traverses the entire page table of contents.
Through memory analysis and memory dump technology, we can extract the re-

quired memory PE file from the dumped memory image file of the system to create our
dataset.

Figure 1. Process information analysis.

1. Firstly, locate the page directory table (line1) by the value of the page directory
base address. Read the page directory entry (PDE) in the page directory table and
determine whether the directory entry is empty. If the directory entry is not empty,
then mark the page directory entry as D. If D&1 equals 1, then mark the value of
D&0xFFFFF000 as the physical address of the page table specified by the directory
entry as T. If D&1 not equals 1, proceed to the next non-empty page directory entry;

2. Secondly, read the first non-empty page entry of the page table. Page table entries are
marked T, and if T&1 equals 1, mark the value of T&0xFFFFF000 as T as the physical
address of the physical page specified by the page entry. Locate the physical address
in the memory image, read the contents of the physical memory page, and dump the
PE data of a single memory into the specified file in the memory image through the
specified physical address. The algorithm (from lines 2 to 15) traverses the entire page
table of contents.

Through memory analysis and memory dump technology, we can extract the required
memory PE file from the dumped memory image file of the system to create our dataset.

Symmetry 2023, 15, 758 6 of 19

Algorithm 1 Process space dump algorithm.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 20

Algorithm 1 Process space dump algorithm

4. The Approach
In this section, we explain the workflow of the entire process in detail. The descrip-

tion of the workflow is illustrated in Figure 2.

4. The Approach

In this section, we explain the workflow of the entire process in detail. The description
of the workflow is illustrated in Figure 2.

4.1. Gathering Memory Data

With regards to research on dynamic data, Wei [27] used KDD99 for experiments,
multiple studies [28,29] used the kernel structure as the dataset for dynamic detection, and
another study [5] used the binary file extracted from a single process to convert it into an
image for the analysis. The process-related DLL files were not exploited yet. To maximize
the malicious files in the memory, we extract all process and DLL files from the memory
dump and created a dataset.

First of all, the common softwares (office, video, audio, and games et.) in the Windows
system are downloaded. Then the softwares are executed and the memory process files
are dumped. Mostly, memory dump files are dumped every 10 min and the operation is
repeated ten times. PE files are dumped multiple times because the software does not load
all files into memory at runtime. To collect malicious samples, static malicious PE files are
downloaded from the VirusShare and Malshare malicious code, libraries which are widely
used by researchers [30,31], and then malicious samples are executed in virtual machines.
The extraction method of dynamic malicious samples is the same as that of benign samples.
Malicious samples are dumped at a certain interval.

Symmetry 2023, 15, 758 7 of 19
Symmetry 2023, 15, x FOR PEER REVIEW 7 of 20

Figure 2. The overall workflow of the proposed approach.

4.1. Gathering Memory Data
With regards to research on dynamic data, Wei [27] used KDD99 for experiments,

multiple studies [28,29] used the kernel structure as the dataset for dynamic detection,
and another study [5] used the binary file extracted from a single process to convert it
into an image for the analysis. The process-related DLL files were not exploited yet. To
maximize the malicious files in the memory, we extract all process and DLL files from the
memory dump and created a dataset.

First of all, the common softwares (office, video, audio, and games et.) in the Win-
dows system are downloaded. Then the softwares are executed and the memory process
files are dumped. Mostly, memory dump files are dumped every 10 min and the opera-
tion is repeated ten times. PE files are dumped multiple times because the software does
not load all files into memory at runtime. To collect malicious samples, static malicious
PE files are downloaded from the VirusShare and Malshare malicious code, libraries
which are widely used by researchers [30,31], and then malicious samples are executed in
virtual machines. The extraction method of dynamic malicious samples is the same as
that of benign samples. Malicious samples are dumped at a certain interval.

Finally, a total of 4896 data samples are obtained. To identify whether the extracted
samples are benign or malicious samples, the benign and malicious samples are authen-
ticated through the API interface of VirusTotal.

Figure 2. The overall workflow of the proposed approach.

Finally, a total of 4896 data samples are obtained. To identify whether the extracted
samples are benign or malicious samples, the benign and malicious samples are authenti-
cated through the API interface of VirusTotal.

4.2. Dataset Preprocessing
4.2.1. Data Type Conversion

The dataset of the memory file is considerably different from the text dataset of natural
language processing. We first preprocess the dataset by using natural language word
segmentation; that is, by converting binary data into single words and then conducting
word embedding. However, when the model is used to train the processed samples, the
training result is inferior, with an accuracy of approximately 0.5, which is of no value for
dichotomy classification. After conducting research, it is found that the memory PE binary
file has many consecutive 0 s appearing in the file, which cannot be effectively learned
for the data after the word segmentation. Several studies [9,32] converted the binary data
into images as datasets. A previous study [14] directly learned the binary files during
data preprocessing. Figure 3 shows our operations on the data type transformation of the
dataset. The value range of the 8-bit binary number is 0–255, and the value of the image is
also 0–255. Since convolutional neural networks perform well in image classification, we
convert every eight binary bits of the malicious code to a decimal, making it a similar form
to image numerical values. The training data should be cut to the same length before being

Symmetry 2023, 15, 758 8 of 19

added to the training model. We first add 1 to the data in the dataset, and then for data
more minor than the length, 0 is used to fill in the data to avoid mixing with the actual data.

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 20

4.2. Dataset Preprocessing
4.2.1. Data Type Conversion

The dataset of the memory file is considerably different from the text dataset of
natural language processing. We first preprocess the dataset by using natural language
word segmentation; that is, by converting binary data into single words and then con-
ducting word embedding. However, when the model is used to train the processed
samples, the training result is inferior, with an accuracy of approximately 0.5, which is of
no value for dichotomy classification. After conducting research, it is found that the
memory PE binary file has many consecutive 0 s appearing in the file, which cannot be
effectively learned for the data after the word segmentation. Several studies [9,32] con-
verted the binary data into images as datasets. A previous study [14] directly learned the
binary files during data preprocessing. Figure 3 shows our operations on the data type
transformation of the dataset. The value range of the 8-bit binary number is 0–255, and
the value of the image is also 0–255. Since convolutional neural networks perform well in
image classification, we convert every eight binary bits of the malicious code to a deci-
mal, making it a similar form to image numerical values. The training data should be cut
to the same length before being added to the training model. We first add 1 to the data in
the dataset, and then for data more minor than the length, 0 is used to fill in the data to
avoid mixing with the actual data.

Figure 3. Data type conversion.

4.2.2. Segment Selection
The dataset sample takes a fragment of the sample for training. Three methods are

adopted to intercept part of the data in the sample.
• As is shown in Figure 4, the sample header is selected for fragmentation, and the

lengths of the header for the fragmentation are 32, 64, 128, 256, 512, 1024, 2048, 4096,
10,000, and 30,000 bytes. The effect of taking different lengths of the sample frag-
ments on the model’s accuracy is observed through experiments. Additionally, the
method of sample fragment training can also improve the detection efficiency of the
model and significantly reduce the time taken for sample detection;

01101001011100101100111010…………………………………………………………01100100111001101011

32bytes 30,000bytes……128bytes64bytes32bytes

……

Figure 4. Select head segment.

• As is shown in Figure 5, the tail of the sample is selected for the fragmentation such
that the influence of the different positions of the fragment on the training accuracy
can be judged. The tail is chosen to extract the sample fragment, and the extracted
length is the same as the length extracted from the header, so the effect of the dif-
ferent positions can be better performed;

Figure 3. Data type conversion.

4.2.2. Segment Selection

The dataset sample takes a fragment of the sample for training. Three methods are
adopted to intercept part of the data in the sample.

• As is shown in Figure 4, the sample header is selected for fragmentation, and the
lengths of the header for the fragmentation are 32, 64, 128, 256, 512, 1024, 2048, 4096,
10,000, and 30,000 bytes. The effect of taking different lengths of the sample fragments
on the model’s accuracy is observed through experiments. Additionally, the method
of sample fragment training can also improve the detection efficiency of the model
and significantly reduce the time taken for sample detection;

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 20

4.2. Dataset Preprocessing
4.2.1. Data Type Conversion

The dataset of the memory file is considerably different from the text dataset of
natural language processing. We first preprocess the dataset by using natural language
word segmentation; that is, by converting binary data into single words and then con-
ducting word embedding. However, when the model is used to train the processed
samples, the training result is inferior, with an accuracy of approximately 0.5, which is of
no value for dichotomy classification. After conducting research, it is found that the
memory PE binary file has many consecutive 0 s appearing in the file, which cannot be
effectively learned for the data after the word segmentation. Several studies [9,32] con-
verted the binary data into images as datasets. A previous study [14] directly learned the
binary files during data preprocessing. Figure 3 shows our operations on the data type
transformation of the dataset. The value range of the 8-bit binary number is 0–255, and
the value of the image is also 0–255. Since convolutional neural networks perform well in
image classification, we convert every eight binary bits of the malicious code to a deci-
mal, making it a similar form to image numerical values. The training data should be cut
to the same length before being added to the training model. We first add 1 to the data in
the dataset, and then for data more minor than the length, 0 is used to fill in the data to
avoid mixing with the actual data.

Figure 3. Data type conversion.

4.2.2. Segment Selection
The dataset sample takes a fragment of the sample for training. Three methods are

adopted to intercept part of the data in the sample.
• As is shown in Figure 4, the sample header is selected for fragmentation, and the

lengths of the header for the fragmentation are 32, 64, 128, 256, 512, 1024, 2048, 4096,
10,000, and 30,000 bytes. The effect of taking different lengths of the sample frag-
ments on the model’s accuracy is observed through experiments. Additionally, the
method of sample fragment training can also improve the detection efficiency of the
model and significantly reduce the time taken for sample detection;

01101001011100101100111010…………………………………………………………01100100111001101011

32bytes 30,000bytes……128bytes64bytes32bytes

……

Figure 4. Select head segment.

• As is shown in Figure 5, the tail of the sample is selected for the fragmentation such
that the influence of the different positions of the fragment on the training accuracy
can be judged. The tail is chosen to extract the sample fragment, and the extracted
length is the same as the length extracted from the header, so the effect of the dif-
ferent positions can be better performed;

Figure 4. Select head segment.

• As is shown in Figure 5, the tail of the sample is selected for the fragmentation such
that the influence of the different positions of the fragment on the training accuracy
can be judged. The tail is chosen to extract the sample fragment, and the extracted
length is the same as the length extracted from the header, so the effect of the different
positions can be better performed;

Symmetry 2023, 15, x FOR PEER REVIEW 9 of 20

Figure 5. Select tail segment.

• As is shown in Figure 6, samples for the fragmentation are selected randomly. To
better reflect the influence of the different locations on the experimental results,
samples with the same fragment length but other locations are randomly extracted
for each sample.

Figure 6. Select a random segment.

4.3. Our Model
To address the problems that the dynamic PE files are incomplete and professional

detection of malware is difficult, a deep model framework is proposed to learn the char-
acteristics of the dynamic PE files to achieve the purpose of classification. The tiny frag-
ment of the memory PE files (256 bytes) exhibits good detection results.

In the selection process of the deep learning model, long short-term memory [33]
(LSTM) is firstly used for the experiments. LSTM is relatively mature in the field of nat-
ural language processing [34–36]. However, the experimental results show that the time
cost of model training is higher than that for CNN. Owing to the complex and diverse
forms of malicious code, the features extracted by the CNN have translation invariance
characteristics [37]. As the location of malicious code is not fixed, CNN is more suitable
for the malicious code detection in binary PE files. In addition, with the increasing length
of sequence fragments, the computation amount of the LSTM model will be very large
and the procedure is time-consuming. Although the training duration of the ordinary
CNN model is shorter than that of the LSTM, the training effect of CNN is similar to that
of LSTM in terms of accuracy. Our model architecture is designed to maximize learning
from preprocessed samples, as shown in Figure 7. We adopted a network model with a
12-layer structure based on CNN, in which we primarily used multiple convolutional
layers for the model’s architecture. To prevent overfitting of the model during training,
we added multiple dropout layers. The general dropout layer hides a quarter of the
neuron nodes. In the study that proposed the famous VGG structure, Simonyan and
Zisserman [21] observed that for a given receiving field, the performance of the stacked
small convolutional kernel is better than that of the large convolutional kernel because
multiple nonlinear layers can increase the network depth. Hence, the convolution kernels
used in this study are small. For the optimizer in deep learning, the accuracy rate of
Adam was found to be better than that of the SGD. Therefore, Adam was adopted, and a
cross-entropy loss function was adopted for the loss function of deep learning back
propagation. The pre-processed dataset in Section 4.2 is one-dimensional data, so the
one-dimensional convolutional neural network (CNN1D) is adopted in our model. The
difference between CNN1D and CNN is that CNN is mainly used for the detection of
two-dimensional images, while CNN1D is used for the detection of one-dimensional
data. We use CNN1D to input one-dimensional data into the model with a multi-channel
mode, and then we do continuous translation calculation by the convolution kernel. The
tag values are compared by using the softmax function. Finally, the cross entropy loss
function is used for back propagation to optimize the model; thus, achieving the accurate

Figure 5. Select tail segment.

• As is shown in Figure 6, samples for the fragmentation are selected randomly. To better
reflect the influence of the different locations on the experimental results, samples with
the same fragment length but other locations are randomly extracted for each sample.

Symmetry 2023, 15, x FOR PEER REVIEW 9 of 20

Figure 5. Select tail segment.

• As is shown in Figure 6, samples for the fragmentation are selected randomly. To
better reflect the influence of the different locations on the experimental results,
samples with the same fragment length but other locations are randomly extracted
for each sample.

Figure 6. Select a random segment.

4.3. Our Model
To address the problems that the dynamic PE files are incomplete and professional

detection of malware is difficult, a deep model framework is proposed to learn the char-
acteristics of the dynamic PE files to achieve the purpose of classification. The tiny frag-
ment of the memory PE files (256 bytes) exhibits good detection results.

In the selection process of the deep learning model, long short-term memory [33]
(LSTM) is firstly used for the experiments. LSTM is relatively mature in the field of nat-
ural language processing [34–36]. However, the experimental results show that the time
cost of model training is higher than that for CNN. Owing to the complex and diverse
forms of malicious code, the features extracted by the CNN have translation invariance
characteristics [37]. As the location of malicious code is not fixed, CNN is more suitable
for the malicious code detection in binary PE files. In addition, with the increasing length
of sequence fragments, the computation amount of the LSTM model will be very large
and the procedure is time-consuming. Although the training duration of the ordinary
CNN model is shorter than that of the LSTM, the training effect of CNN is similar to that
of LSTM in terms of accuracy. Our model architecture is designed to maximize learning
from preprocessed samples, as shown in Figure 7. We adopted a network model with a
12-layer structure based on CNN, in which we primarily used multiple convolutional
layers for the model’s architecture. To prevent overfitting of the model during training,
we added multiple dropout layers. The general dropout layer hides a quarter of the
neuron nodes. In the study that proposed the famous VGG structure, Simonyan and
Zisserman [21] observed that for a given receiving field, the performance of the stacked
small convolutional kernel is better than that of the large convolutional kernel because
multiple nonlinear layers can increase the network depth. Hence, the convolution kernels
used in this study are small. For the optimizer in deep learning, the accuracy rate of
Adam was found to be better than that of the SGD. Therefore, Adam was adopted, and a
cross-entropy loss function was adopted for the loss function of deep learning back
propagation. The pre-processed dataset in Section 4.2 is one-dimensional data, so the
one-dimensional convolutional neural network (CNN1D) is adopted in our model. The
difference between CNN1D and CNN is that CNN is mainly used for the detection of
two-dimensional images, while CNN1D is used for the detection of one-dimensional
data. We use CNN1D to input one-dimensional data into the model with a multi-channel
mode, and then we do continuous translation calculation by the convolution kernel. The
tag values are compared by using the softmax function. Finally, the cross entropy loss
function is used for back propagation to optimize the model; thus, achieving the accurate

Figure 6. Select a random segment.

4.3. Our Model

To address the problems that the dynamic PE files are incomplete and professional
detection of malware is difficult, a deep model framework is proposed to learn the charac-

Symmetry 2023, 15, 758 9 of 19

teristics of the dynamic PE files to achieve the purpose of classification. The tiny fragment
of the memory PE files (256 bytes) exhibits good detection results.

In the selection process of the deep learning model, long short-term memory [33]
(LSTM) is firstly used for the experiments. LSTM is relatively mature in the field of
natural language processing [34–36]. However, the experimental results show that the time
cost of model training is higher than that for CNN. Owing to the complex and diverse
forms of malicious code, the features extracted by the CNN have translation invariance
characteristics [37]. As the location of malicious code is not fixed, CNN is more suitable for
the malicious code detection in binary PE files. In addition, with the increasing length of
sequence fragments, the computation amount of the LSTM model will be very large and
the procedure is time-consuming. Although the training duration of the ordinary CNN
model is shorter than that of the LSTM, the training effect of CNN is similar to that of
LSTM in terms of accuracy. Our model architecture is designed to maximize learning from
preprocessed samples, as shown in Figure 7. We adopted a network model with a 12-layer
structure based on CNN, in which we primarily used multiple convolutional layers for
the model’s architecture. To prevent overfitting of the model during training, we added
multiple dropout layers. The general dropout layer hides a quarter of the neuron nodes. In
the study that proposed the famous VGG structure, Simonyan and Zisserman [21] observed
that for a given receiving field, the performance of the stacked small convolutional kernel
is better than that of the large convolutional kernel because multiple nonlinear layers can
increase the network depth. Hence, the convolution kernels used in this study are small. For
the optimizer in deep learning, the accuracy rate of Adam was found to be better than that
of the SGD. Therefore, Adam was adopted, and a cross-entropy loss function was adopted
for the loss function of deep learning back propagation. The pre-processed dataset in
Section 4.2 is one-dimensional data, so the one-dimensional convolutional neural network
(CNN1D) is adopted in our model. The difference between CNN1D and CNN is that CNN
is mainly used for the detection of two-dimensional images, while CNN1D is used for the
detection of one-dimensional data. We use CNN1D to input one-dimensional data into
the model with a multi-channel mode, and then we do continuous translation calculation
by the convolution kernel. The tag values are compared by using the softmax function.
Finally, the cross entropy loss function is used for back propagation to optimize the model;
thus, achieving the accurate detection of malicious code detection can be achieved with
high accuracy. The processing procedure of LSTM model is similar to the above method.
The preprocessed one-dimensional data are also input to the LSTM model for training and
malicious code detection can be realized.

Symmetry 2023, 15, x FOR PEER REVIEW 10 of 20

detection of malicious code detection can be achieved with high accuracy. The processing
procedure of LSTM model is similar to the above method. The preprocessed
one-dimensional data are also input to the LSTM model for training and malicious code
detection can be realized.

Figure 7. Our model.

4.4. Neural Network Algorithm
This section introduces the algorithm in the neural network model designed for this

study.
The output characteristics of the first, second, and third convolution layers in the

PyTorch environment can be expressed as:

𝑜𝑢𝑡(𝑁 , 𝐶) = 𝑏𝑖𝑎𝑠(𝐶 , 𝑘) + 𝑤𝑒𝑖𝑔ℎ𝑡 𝐶 , 𝑘 × 𝑖𝑛𝑝𝑢𝑡(𝑁 , 𝑘) (1)

where N is the batch size, C is the channel size, L is the sequence length, and bias is the
offset value of the neural network. Batch refers to the number of samples processed in
batches, as the samples are divided into several groups. The number of samples in each
group is the size of the batch, i is the index of the sample groups, j is the index of the
number of samples, and k is the index of the input channel.

The length of the output sequence comprising the first, second, and third convolu-
tion layers is calculated using the following equation:

 𝐿 = 𝐿 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 − 1) − 1𝑠𝑡𝑟𝑖𝑑𝑒 + 1 (2)

where Lout is the output sequence length, Lin is the length of the input sequence, padding
is the filling length, dilation is the size of the cavity convolution, which is set to 1, ker-
nel_size is the size of the convolution kernel, and stride is the size of the step.

The input parameters of the flatten layer are computed using the output parameters
of the pooling layer. The sequence is flattened using a flattened layer, then transformed
into two neuron nodes by a fully connected layer, and finally classified by a softmax
function.

The softmax layer, which is the last layer of the hidden layer, namely the classifier, is
expressed as: 𝑦 = 𝑒𝑥𝑝 (𝑎)∑ 𝑒𝑥𝑝 (𝑎) (3)

The exp (x) denotes the exponential function of ex (e is the Napier’s constant =
2.7182...), n represents the total number of neurons in the output layer, and yk represents
the output of the k neurons in the output layer, where the numerator is the exponential

Figure 7. Our model.

4.4. Neural Network Algorithm

This section introduces the algorithm in the neural network model designed for
this study.

Symmetry 2023, 15, 758 10 of 19

The output characteristics of the first, second, and third convolution layers in the
PyTorch environment can be expressed as:

out
(

Ni, Coutj

)
= bias

(
Coutj , k

)
+

Cin−1

∑
k=0

weight
(

Coutj , k
)
× input(Ni, k) (1)

where N is the batch size, C is the channel size, L is the sequence length, and bias is the
offset value of the neural network. Batch refers to the number of samples processed in
batches, as the samples are divided into several groups. The number of samples in each
group is the size of the batch, i is the index of the sample groups, j is the index of the
number of samples, and k is the index of the input channel.

The length of the output sequence comprising the first, second, and third convolution
layers is calculated using the following equation:

Lout =

⌊
Lin + 2 × padding − dilation(kernel_size − 1)− 1

stride
+ 1

⌋
(2)

where Lout is the output sequence length, Lin is the length of the input sequence, padding is
the filling length, dilation is the size of the cavity convolution, which is set to 1, kernel_size
is the size of the convolution kernel, and stride is the size of the step.

The input parameters of the flatten layer are computed using the output parameters of
the pooling layer. The sequence is flattened using a flattened layer, then transformed into
two neuron nodes by a fully connected layer, and finally classified by a softmax function.

The softmax layer, which is the last layer of the hidden layer, namely the classifier, is
expressed as:

yk =
exp(ak)

∑n
i=1 exp(ai)

(3)

The exp (x) denotes the exponential function of ex (e is the Napier’s constant = 2.7182...),
n represents the total number of neurons in the output layer, and yk represents the output of
the k neurons in the output layer, where the numerator is the exponential function of input
signal ak of the k neuron, and the denominator is the sum of the exponential functions of
all input signals.

The loss function of the neural network model adopts the min-batch cross-entropy
loss function:

E = − 1
M ∑

m
∑
k

tmklog ymk (4)

where M represents the number of training set samples, tmk represents the value of the k
element of the m prediction sample, ymk is the neural network’s output to the m prediction
sample, and tmk is the supervised data. By extending the loss function of a single piece of
data to M pieces of data and dividing by M at the end, the average loss function of a single
prediction fragment can be obtained. A unified indicator independent of the training data
can be obtained through such averaging.

Through Equations (1) and (2), we can calculate each convolutional layer’s input and
output sizes. In our model, the input parameters of the fully connected layer need to be
manually calculated when training sample segments of different sizes. Calculating each
layer’s length is complicated through the above formula. By observing and calculating the
neural network model we constructed, we obtained the formula for calculating the input
length of the fully connected layer in our model:

Flattenin =

(
(samplelen−1)

maxpoolsize

)
− 2

maxpoolsize
2 (5)

Falttenin represents the input length of the fully connected layer, samplelen represents
the input sample length, maxpoolsize means the size of the pooling layer, and conv_channel

Symmetry 2023, 15, 758 11 of 19

represents the output channel size of the last convolutional layer. Taking the fragment
length of 2048 as an example, only the convolution layer and the pooling layer affect the
data size, and the other neural network layers before the fully connected layer do not
affect the data size. Our model has three convolution layers and three pooling layers, and
the convolution kernel sizes of the three convolution layers are 3, 4, and 5, respectively.
The maximum pooling is used for the pooling layer, and the three pooling layers are
all set to 4. In our model, the padding of the convolution layer is set to 0, so the data
length will be reduced by 1 after each convolution. It shrinks by a factor of four with
each pooling. The order of convolution pooling in our model is convolution, pooling,
convolution, convolution, pooling, and pooling; after the convolution pooling of our model,
the length of the data with a sample fragment length of 2048 is firstly reduced by 1, and
then the length is reduced by four times. By subtracting the output of the previous layer
by 1 twice, and twice reducing it by four times, the sample length becomes 31. Finally,
multiplying 31 by the number of output channels of the last convolutional layer is the input
parameter of the fully connected layer. Figure 7 shows the detailed calculation process of
the input length of the flattening layer in the neural network section.

The detailed parameter settings of the neural network model are introduced in
the Section 5.3.

5. Experimental Overview
5.1. Operating Environment and Datasets

The hardware CPU of our experiment is the Intel(R) Core(TM) i7-11800H processor,
configured with two 8G memory; NVIDIA GeForce RTX 3050 graphics card. The software
environment is a 64-bit Windows10 operating system and VMWare, which installs Windows
7 and Windows XP virtual machines to run malicious samples. The environment for
building and running the deep learning framework is Python 3.7, Anaconda conda 4.11.0,
and PyTorch torch1.10.1. The dataset is generated as follows: collecting static samples from
VirusShare and Malshare, running the samples in the virtual machine, dumping memory
information and extracting processes, and DLL files from the memory data.

5.2. Evaluation Metrics

For detecting malicious code, we use the four evaluation indexes of binary classifica-
tion: accuracy, precision, F-measure, and recall [38]. F-measure implies that one index can
reflect both the accuracy and recall rates.

recall = TP/(TN + FN) (6)

Precision = TP/(TN + FP) (7)

F − measure = 2 × (Precision × recall)/(Precision + recall) (8)

Accuracy = (TP + TN)/(TP + FP + TN + FN). (9)

TP represents the number of samples that are predicted to be malicious samples out
of the genuinely malicious samples. FP represents the number of truly benign samples
predicted to be malicious samples. TN represents the number of genuinely benign samples
that are predicted to be benign samples. FN indicates that the actual sample is malicious
and the predicted sample is benign.

5.3. Datasets Parameter Optimization

When the segment length is less than 1024 bytes because the proposed model under-
goes multiple convolutions and pooling, the length of the last convolutional layer is greater
than the output sequence length of the previous network layer, and the model cannot be
trained. Table 1 lists the adjusted parameters of the convolution and pooling layers of the
model for the cases in the experiment when the length is less than 1024. Subsequently, the
optimal parameters suitable for the current length are obtained. When the fragment length

Symmetry 2023, 15, 758 12 of 19

is larger than 1024, parameters of the convolution and pooling layers for a length size of
1024 are adopted.

Table 1. Model convolution pooling size for parameter tuning.

Fragment
Length [Byte]

Convolution
Kernel 1 Max Pool Convolution

Kernel 2
Convolution

Kernel 3

32 5 2 3 2
64 3 2 4 5

128 3 2 4 5
256 3 3 4 5
512 3 4 4 5

1024 3 4 4 5

5.4. Sample Fragments of Different Lengths

As demonstrated through the results presented in Table 2, when our model detects
data samples of different lengths for training, the strategy is to select the intercepted
fragments from the header.

Table 2. Sample fragments of different lengths.

Fragment Length Accuracy Recall Precision F-Measure

32 52.67 11.34 83.45 20.38
64 63.58 39.5 78.99 52.66
128 68.28 66.39 69.00 67.67
256 86.21 84.03 87.85 86.02
512 90.43 84.12 96.28 89.79

1024 93.34 89.91 96.83 93.24
2048 95.38 93.28 97.97 95.28
4096 97.48 96.22 98.71 97.45

10,000 96.00 94.11 97.81 95.93
30,000 97.27 97.90 96.68 97.29

As shown in Figure 8, the training model performs poorly, and no effective features
are extracted when the fragment length is 32. When the fragment length is 256, the training
accuracy is improved, and all evaluation indices are stable. As the length of the training
segment increases, the accuracy rate improves, and the accuracy rate reaches the maximum
value when the size is 4096. By training samples of different lengths, detecting malicious
samples can be enhanced by detecting fragments of samples.

5.5. Sample Fragments of Different Lengths

The influence of different sampling locations on the experimental results is investigated
to explore the change in the accuracy of different locations of the same sample upon
sampling the same length. For the location selection of sample fragments, we extracted
samples from the head, the tail, and randomly, as demonstrated in Table 3. In the process
of random extraction, each sample location was random, which increased the difficulty of
sample extraction.

As seen from Figure 9, when the sample is sampled at the head, the prediction accuracy
of the model is the highest, and the head has more features because the head contains the
most critical feature information. The accuracy of tail extraction is the lowest, indicating that
the tail includes the least number of key features. This is because only the critical data are
called in the memory when the sample runs. Additionally, owing to the page replacement
mechanism of the memory, as the system runs for a longer time, pages are constantly
swapped into the memory, and pages existing in the memory are also temporarily swapped
out, resulting in the least number of data features in the tail of the sample. Although
random extraction is random for the location of different samples, it exhibits good accuracy.

Symmetry 2023, 15, 758 13 of 19

Furthermore, when the length of training data is greater than 10,000, the accuracy of tail
extraction is high.

Symmetry 2023, 15, x FOR PEER REVIEW 13 of 20

256 86.21 84.03 87.85 86.02
512 90.43 84.12 96.28 89.79

1024 93.34 89.91 96.83 93.24
2048 95.38 93.28 97.97 95.28
4096 97.48 96.22 98.71 97.45

10,000 96.00 94.11 97.81 95.93
30,000 97.27 97.90 96.68 97.29

As shown in Figure 8, the training model performs poorly, and no effective features
are extracted when the fragment length is 32. When the fragment length is 256, the
training accuracy is improved, and all evaluation indices are stable. As the length of the
training segment increases, the accuracy rate improves, and the accuracy rate reaches the
maximum value when the size is 4096. By training samples of different lengths, detecting
malicious samples can be enhanced by detecting fragments of samples.

Figure 8. Sample fragments of different lengths.

5.5. Sample Fragments of Different Lengths
The influence of different sampling locations on the experimental results is investi-

gated to explore the change in the accuracy of different locations of the same sample
upon sampling the same length. For the location selection of sample fragments, we ex-
tracted samples from the head, the tail, and randomly, as demonstrated in Table 3. In the
process of random extraction, each sample location was random, which increased the
difficulty of sample extraction.

Table 3. Sample fragments from different locations.

Fragment Length Extraction Head Extraction Tail Random Extraction
32 52.67 51.72 63.50
64 63.58 59.24 67.46
128 68.28 59.66 69.90
256 86.21 60.08 70.07

Figure 8. Sample fragments of different lengths.

Table 3. Sample fragments from different locations.

Fragment Length Extraction Head Extraction Tail Random Extraction

32 52.67 51.72 63.50
64 63.58 59.24 67.46

128 68.28 59.66 69.90
256 86.21 60.08 70.07
512 90.47 65.27 70.12

1024 93.34 70.37 71.79
2048 95.38 72.43 73.52
4096 97.48 73.38 74.09

10,000 96.00 86.13 77.31
30,000 97.27 90.97 80.04

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 20

512 90.47 65.27 70.12
1024 93.34 70.37 71.79
2048 95.38 72.43 73.52
4096 97.48 73.38 74.09

10,000 96.00 86.13 77.31
30,000 97.27 90.97 80.04

As seen from Figure 9, when the sample is sampled at the head, the prediction ac-
curacy of the model is the highest, and the head has more features because the head
contains the most critical feature information. The accuracy of tail extraction is the lowest,
indicating that the tail includes the least number of key features. This is because only the
critical data are called in the memory when the sample runs. Additionally, owing to the
page replacement mechanism of the memory, as the system runs for a longer time, pages
are constantly swapped into the memory, and pages existing in the memory are also
temporarily swapped out, resulting in the least number of data features in the tail of the
sample. Although random extraction is random for the location of different samples, it
exhibits good accuracy. Furthermore, when the length of training data is greater than
10,000, the accuracy of tail extraction is high.

Figure 9. Sample fragments from different locations.

5.6. Comparison of Different Models
To verify the advantages of the proposed model, we perform comparative experi-

ments with the common deep learning model LSTM and CNN. Table 4 lists the results of
the comparison. Additionally, we conduct several experiments on these models and find
out the optimal results. Extensive experiments show that the proposed model outper-
forms the compared models. In particular, the longer the sample sequence, the longer the
time to train the LSTM. For the same sequence length, the proposed model takes 6 h to
train, while the LSTM takes 30 h, and the training effect is less accurate than that of the
proposed model. There is a negligible difference between the ordinary CNN training and
research training time. Figure 10 illustrates that the proposed model is superior in terms
of accuracy.

Table 4. Comparison of different models.

Fragment Length Our Model LSTM Normal CNN

Figure 9. Sample fragments from different locations.

Symmetry 2023, 15, 758 14 of 19

5.6. Comparison of Different Models

To verify the advantages of the proposed model, we perform comparative experiments
with the common deep learning model LSTM and CNN. Table 4 lists the results of the
comparison. Additionally, we conduct several experiments on these models and find out
the optimal results. Extensive experiments show that the proposed model outperforms
the compared models. In particular, the longer the sample sequence, the longer the time
to train the LSTM. For the same sequence length, the proposed model takes 6 h to train,
while the LSTM takes 30 h, and the training effect is less accurate than that of the proposed
model. There is a negligible difference between the ordinary CNN training and research
training time. Figure 10 illustrates that the proposed model is superior in terms of accuracy.

Table 4. Comparison of different models.

Fragment Length Our Model LSTM Normal CNN

32 52.67 52.99 50.00
64 63.58 60.49 52.36

128 68.28 67.99 63.46
256 86.21 80.75 71.45
512 90.47 82.47 74.50

1024 93.34 84.49 81.49
2048 95.38 90.50 90.99
4096 97.48 88.99 91.49

10,000 96.00 77.99 86.50
30,000 97.27 77.49 86.37

Symmetry 2023, 15, x FOR PEER REVIEW 15 of 20

32 52.67 52.99 50.00
64 63.58 60.49 52.36
128 68.28 67.99 63.46
256 86.21 80.75 71.45
512 90.47 82.47 74.50

1024 93.34 84.49 81.49
2048 95.38 90.50 90.99
4096 97.48 88.99 91.49

10,000 96.00 77.99 86.50
30,000 97.27 77.49 86.37

Figure 10. Comparison of different models.

We also compared commonly used machine learning methods. We converted binary
files in our dataset into gray images, then used HOG for feature extraction, and finally
used standard machine learning methods XGB, light gradient boosting machine (LGBM),
random forest (RF), SVM, decision tree, and deep forest (DF) for detection. As shown in
Table 5, we transform binary files into grayscale images with four different pixels, which
are detected by the above six machine learning methods.

Table 5. Comparison of different models.

Machine Learning
Model

Image Width
(Pixels) Accuracy Recall Precision F-Measure

XGB1 32 87.44 88.66 87.44 88.01
LGBM2 32 87.44 88.72 87.44 88.03

RF3 32 89.82 93.34 89.82 91.50
Decision tree 32 83.85 74.01 83.85 78.42

SVM4 32 69.60 60.05 69.60 63.90
DF5 32 92.81 97.91 88.94 93.17
XGB 64 87.44 88.66 87.44 88.01

LGBM 64 87.44 88.72 87.44 88.03

1 XGBoost
2 LightGBM
3 Random Forest
4 Support Vector Machine
5 Decision Forest

Figure 10. Comparison of different models.

We also compared commonly used machine learning methods. We converted binary
files in our dataset into gray images, then used HOG for feature extraction, and finally
used standard machine learning methods XGB, light gradient boosting machine (LGBM),
random forest (RF), SVM, decision tree, and deep forest (DF) for detection. As shown in
Table 5, we transform binary files into grayscale images with four different pixels, which
are detected by the above six machine learning methods.

Figure 11 shows the best performance accuracy of the machine learning methods in
Table 2. Different machine learning methods also have obvious differences. Among them,
decision tree has the worst performance on our dataset, and DF has the best performance,
but our model still has high accuracy.

Symmetry 2023, 15, 758 15 of 19

Table 5. Comparison of different models.

Machine Learning Model Image Width (Pixels) Accuracy Recall Precision F-Measure

XGB 1 32 87.44 88.66 87.44 88.01
LGBM 2 32 87.44 88.72 87.44 88.03

RF 3 32 89.82 93.34 89.82 91.50
Decision tree 32 83.85 74.01 83.85 78.42

SVM 4 32 69.60 60.05 69.60 63.90
DF 5 32 92.81 97.91 88.94 93.17

XGB 64 87.44 88.66 87.44 88.01
LGBM 64 87.44 88.72 87.44 88.03

RF 64 89.82 93.34 89.82 91.50
Decision tree 64 83.85 74.01 83.85 78.42

SVM 64 69.60 60.05 69.60 63.90
DF 64 92.81 97.91 88.94 93.17

XGB 128 87.44 88.66 87.44 88.01
LGBM 128 87.44 88.72 87.44 88.03

RF 128 89.82 93.34 89.82 91.50
Decision tree 128 83.85 74.01 83.85 78.42

SVM 128 69.60 60.05 69.60 63.90
DF 128 92.81 97.91 88.94 93.17

XGB 256 87.44 88.66 87.44 88.01
LGBM 256 87.44 88.72 87.44 88.03

RF 256 89.82 93.34 89.82 91.50
Decision tree 256 83.85 74.01 83.85 78.42

SVM 256 69.60 60.05 69.60 63.90
DF 256 92.81 97.91 88.94 93.17

1 XGBoost, 2 LightGBM, 3 Random Forest, 4 Support Vector Machine, 5 Decision Forest.

Symmetry 2023, 15, x FOR PEER REVIEW 16 of 20

RF 64 89.82 93.34 89.82 91.50
Decision tree 64 83.85 74.01 83.85 78.42

SVM 64 69.60 60.05 69.60 63.90
DF 64 92.81 97.91 88.94 93.17

XGB 128 87.44 88.66 87.44 88.01
LGBM 128 87.44 88.72 87.44 88.03

RF 128 89.82 93.34 89.82 91.50
Decision tree 128 83.85 74.01 83.85 78.42

SVM 128 69.60 60.05 69.60 63.90
DF 128 92.81 97.91 88.94 93.17

XGB 256 87.44 88.66 87.44 88.01
LGBM 256 87.44 88.72 87.44 88.03

RF 256 89.82 93.34 89.82 91.50
Decision tree 256 83.85 74.01 83.85 78.42

SVM 256 69.60 60.05 69.60 63.90
DF 256 92.81 97.91 88.94 93.17

Figure 11 shows the best performance accuracy of the machine learning methods in
Table 2. Different machine learning methods also have obvious differences. Among
them, decision tree has the worst performance on our dataset, and DF has the best per-
formance, but our model still has high accuracy.

Figure 11. Comparison of different models.

We not only compare common machine learning and deep learning methods, but
also reproduced the technologies used in [9,12,17] and in related work using our dataset
and compared them. Table 6 clearly shows the four measurement indicators, and our
performance is better than theirs.

Table 6. Comparison of different models.

Study Accuracy Recall Precision F-Measure
Bozkir et al., 2021 [5] 93.44 96.23 91.20 93.60

Lu XD et al., 2020 [18] 94.73 97.49 92.77 95.03
Huhua Li et al., 2019 [13] 91.94 82.91 99.76 90.65

Our Model 97.48 96.22 98.71 97.45

5.7. Example of Fileless Malware Detection
A fileless attack spreads over the network, and no trace of the virus can be detected

on the local disk because such an attack does not store files on the disk. Many fileless at-

Figure 11. Comparison of different models.

We not only compare common machine learning and deep learning methods, but
also reproduced the technologies used in [9,12,17] and in related work using our dataset
and compared them. Table 6 clearly shows the four measurement indicators, and our
performance is better than theirs.

Table 6. Comparison of different models.

Study Accuracy Recall Precision F-Measure

Bozkir et al., 2021 [5] 93.44 96.23 91.20 93.60
Lu XD et al., 2020 [18] 94.73 97.49 92.77 95.03

Huhua Li et al., 2019 [13] 91.94 82.91 99.76 90.65
Our Model 97.48 96.22 98.71 97.45

Symmetry 2023, 15, 758 16 of 19

5.7. Example of Fileless Malware Detection

A fileless attack spreads over the network, and no trace of the virus can be detected
on the local disk because such an attack does not store files on the disk. Many fileless
attacks are sent to your computer through emails, and when you click to view them, your
computer will be attacked. The Bitcoin ransomware virus swept the world in 2017, and we
analyzed it in a similar sample recently. The sample attack can be discovered by analyzing
processes, threads, registries, and other behaviors. When the sample is executed, it does
not create a separate process but injects its malicious program into cmd.exe. It is difficult
to find this type of ransomware. After the sample is executed, it encrypts our files, which
must be decrypted by paying for bitcoins. The suffix of the sample is .docx.exe. Imagine if
the suffix of the file is hidden and spread by email, will many people click on the file?

We first create a clean system in the virtual machine, run the cmd window, open the
virtual host monitor, see that the cmd process already exists, dump the virtual system, and
extract a single cmd file named 1.bytes. We run the prepared malicious code sample in the
virtual machine and check the running status of the virus sample. The virus sample, after
running, encrypts Doc, Docx, Xls, xlsx, ppt, pptx, BMP, jpg, png, jpeg, zip, 7z, and RAR
files, and the process is not found in the process list. Figure 12 shows the encrypted file
data for the virus sample.

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 20

tacks are sent to your computer through emails, and when you click to view them, your
computer will be attacked. The Bitcoin ransomware virus swept the world in 2017, and
we analyzed it in a similar sample recently. The sample attack can be discovered by an-
alyzing processes, threads, registries, and other behaviors. When the sample is executed,
it does not create a separate process but injects its malicious program into cmd.exe. It is
difficult to find this type of ransomware. After the sample is executed, it encrypts our
files, which must be decrypted by paying for bitcoins. The suffix of the sample is
.docx.exe. Imagine if the suffix of the file is hidden and spread by email, will many peo-
ple click on the file?

We first create a clean system in the virtual machine, run the cmd window, open the
virtual host monitor, see that the cmd process already exists, dump the virtual system,
and extract a single cmd file named 1.bytes. We run the prepared malicious code sample
in the virtual machine and check the running status of the virus sample. The virus sam-
ple, after running, encrypts Doc, Docx, Xls, xlsx, ppt, pptx, BMP, jpg, png, jpeg, zip, 7z,
and RAR files, and the process is not found in the process list. Figure 12 shows the en-
crypted file data for the virus sample.

Figure 12. Encrypted file.

We will dump the virtual machine that ran the sample and then extract a single
cmd.exe file named 2.bytes. Using the model we trained and saved, we detect that 1.
bytes files are benign and 2. bytes files are malicious. The file we dumped is shown in Figure
13, and Figure 14 is the result of the model output after our detection. Therefore, this type
of attack cannot be detected in static files, and this malicious code can only be detected in
dynamic analysis.

Figure 13. Detect file.

Figure 12. Encrypted file.

We will dump the virtual machine that ran the sample and then extract a single
cmd.exe file named 2.bytes. Using the model we trained and saved, we detect that 1. bytes
files are benign and 2. bytes files are malicious. The file we dumped is shown in Figure 13,
and Figure 14 is the result of the model output after our detection. Therefore, this type of
attack cannot be detected in static files, and this malicious code can only be detected in
dynamic analysis.

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 20

tacks are sent to your computer through emails, and when you click to view them, your
computer will be attacked. The Bitcoin ransomware virus swept the world in 2017, and
we analyzed it in a similar sample recently. The sample attack can be discovered by an-
alyzing processes, threads, registries, and other behaviors. When the sample is executed,
it does not create a separate process but injects its malicious program into cmd.exe. It is
difficult to find this type of ransomware. After the sample is executed, it encrypts our
files, which must be decrypted by paying for bitcoins. The suffix of the sample is
.docx.exe. Imagine if the suffix of the file is hidden and spread by email, will many peo-
ple click on the file?

We first create a clean system in the virtual machine, run the cmd window, open the
virtual host monitor, see that the cmd process already exists, dump the virtual system,
and extract a single cmd file named 1.bytes. We run the prepared malicious code sample
in the virtual machine and check the running status of the virus sample. The virus sam-
ple, after running, encrypts Doc, Docx, Xls, xlsx, ppt, pptx, BMP, jpg, png, jpeg, zip, 7z,
and RAR files, and the process is not found in the process list. Figure 12 shows the en-
crypted file data for the virus sample.

Figure 12. Encrypted file.

We will dump the virtual machine that ran the sample and then extract a single
cmd.exe file named 2.bytes. Using the model we trained and saved, we detect that 1.
bytes files are benign and 2. bytes files are malicious. The file we dumped is shown in Figure
13, and Figure 14 is the result of the model output after our detection. Therefore, this type
of attack cannot be detected in static files, and this malicious code can only be detected in
dynamic analysis.

Figure 13. Detect file. Figure 13. Detect file.

Symmetry 2023, 15, 758 17 of 19Symmetry 2023, 15, x FOR PEER REVIEW 18 of 20

Figure 14. Detect result.

6. Summary and Future Prospect
We adopted a CNN-based neural network model to detect malicious code for

fragments of memory PE files, trained sample fragments of different lengths and loca-
tions, and obtained conclusive experimental results. We believe our results have tre-
mendous implications for memory forensics and malicious code detection.
• We create a dataset of in-memory PE files, which includes benign and malicious

samples;
• For dynamic files, deep learning can effectively detect memory PE files containing

malicious codes;
• The binary data samples can still perform satisfactorily without complicated

pre-processing means and can accurately predict the data samples;
• Based on the comparison of the experimental data, the detection effect of the 4096-byte

fragment is found to be the best. It is proved that dynamic PE files containing mali-
cious codes can be detected by detecting fragments of the dynamic PE files, thus
improving the efficiency of the memory forensics personnel.
In our model, the selected detection fragments may not contain malicious code if the

malicious code does not run for a long time or does not run during the detection time.
This possibility will enhance the false positives. In the future, we will focus on improving
our model to detect and classify multi-families of dynamic malicious behaviors and
adapt to enhance the model’s sustainability. We will also explore new methods to achieve
an accurate selection of PE file fragments. Based on the results of this study, the detection
of virtual machine escapes can be studied in the future.

Author Contributions: Conceptualization, S.Z. and C.H; methodology, S.Z.; software, C.H.; val-
idation, X.S. and L.T.; formal analysis, C.H.; investigation, C.H.; resources, M.J.M.; data curation,
L.T.; writing—original draft preparation, S.Z. and C.H; writing—review and editing, M.J.M.; visu-
alization, L.T.; supervision, L.W.; project administration, L.W.; funding acquisition, S.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China
(62102209), the Shandong Provincial Natural Science Foundation of China (ZR2020KF035), the
Shandong Provincial Key Research and Development Program (2021CXGC010107).

Data Availability Statement: The datasets used during the current study are available from the
corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Conti, M.; Khandhar, S.; Vinod, P. A few-shot malware classification approach for unknown family recognition using malware

feature visualization. Comput. Secur. 2022, 122, 102887.
2. Malware Statistics & Trends Report|AV-TEST. AV Test Malware Statistics. Available online:

https://www.av-test.org/en/statistics/malware (accessed on 23 December 2022).
3. Greenstein, S. The Economics of Information Security and Privacy. J. Econ. Lit. 2014, 52, 1177–1178.
4. Khalid, O.; Ullah, S.; Ahmad, T.; Saeed, S.; Alabbad, D.A.; Aslam, M.; Buriro, A.; Ahmad, R. An Insight into the Ma-

chine-Learning-Based Fileless Malware Detection. Sensors 2023, 23, 612.
5. Kara, I. Fileless malware threats: Recent advances, analysis approach through memory forensics and research challenges. Ex-

pert Syst. Appl. 2022, 214, 119133.
6. Pradip, D.; Pradip, D.; Chakraborty, K. Advances in Number Theory and Applied Analysis; World Scientific: Singapore, 2023.

Figure 14. Detect result.

6. Summary and Future Prospect

We adopted a CNN-based neural network model to detect malicious code for frag-
ments of memory PE files, trained sample fragments of different lengths and locations,
and obtained conclusive experimental results. We believe our results have tremendous
implications for memory forensics and malicious code detection.

• We create a dataset of in-memory PE files, which includes benign and malicious samples;
• For dynamic files, deep learning can effectively detect memory PE files containing

malicious codes;
• The binary data samples can still perform satisfactorily without complicated pre-

processing means and can accurately predict the data samples;
• Based on the comparison of the experimental data, the detection effect of the 4096-

byte fragment is found to be the best. It is proved that dynamic PE files containing
malicious codes can be detected by detecting fragments of the dynamic PE files, thus
improving the efficiency of the memory forensics personnel.

In our model, the selected detection fragments may not contain malicious code if the
malicious code does not run for a long time or does not run during the detection time.
This possibility will enhance the false positives. In the future, we will focus on improving
our model to detect and classify multi-families of dynamic malicious behaviors and adapt
to enhance the model’s sustainability. We will also explore new methods to achieve an
accurate selection of PE file fragments. Based on the results of this study, the detection of
virtual machine escapes can be studied in the future.

Author Contributions: Conceptualization, S.Z. and C.H; methodology, S.Z.; software, C.H.; valida-
tion, S.X. and T.L.; formal analysis, C.H.; investigation, C.H.; resources, M.J.M.; data curation, T.L.;
writing—original draft preparation, S.Z. and C.H; writing—review and editing, M.J.M.; visualization,
T.L.; supervision, L.W.; project administration, L.W.; funding acquisition, S.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62102209),
the Shandong Provincial Natural Science Foundation of China (ZR2020KF035), the Shandong Provin-
cial Key Research and Development Program (2021CXGC010107).

Data Availability Statement: The datasets used during the current study are available from the
corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Conti, M.; Khandhar, S.; Vinod, P. A few-shot malware classification approach for unknown family recognition using malware

feature visualization. Comput. Secur. 2022, 122, 102887. [CrossRef]
2. Malware Statistics & Trends Report|AV-TEST. AV Test Malware Statistics. Available online: https://www.av-test.org/en/

statistics/malware (accessed on 23 December 2022).
3. Greenstein, S. The Economics of Information Security and Privacy. J. Econ. Lit. 2014, 52, 1177–1178.
4. Khalid, O.; Ullah, S.; Ahmad, T.; Saeed, S.; Alabbad, D.A.; Aslam, M.; Buriro, A.; Ahmad, R. An Insight into the Machine-Learning-

Based Fileless Malware Detection. Sensors 2023, 23, 612. [CrossRef] [PubMed]
5. Kara, I. Fileless malware threats: Recent advances, analysis approach through memory forensics and research challenges. Expert

Syst. Appl. 2022, 214, 119133. [CrossRef]
6. Pradip, D.; Pradip, D.; Chakraborty, K. Advances in Number Theory and Applied Analysis; World Scientific: Singapore, 2023.
7. Franzen, F.; Holl, T.; Andreas, M.; Kirsch, J.; Grossklags, J. Katana: Robust, Automated, Binary-Only Forensic Analysis of Linux

Memory Snapshots. In Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses (RAID
2022), Limassol, Cyprus, 26–28 October 2022; ACM: New York, NY, USA 18p. [CrossRef]

http://doi.org/10.1016/j.cose.2022.102887
https://www.av-test.org/en/statistics/malware
https://www.av-test.org/en/statistics/malware
http://doi.org/10.3390/s23020612
http://www.ncbi.nlm.nih.gov/pubmed/36679406
http://doi.org/10.1016/j.eswa.2022.119133
http://doi.org/10.1145/3545948.3545980

Symmetry 2023, 15, 758 18 of 19

8. Ligh, M.H.; Case, A.; Levy, J.; Walters, A. The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac
memory; John Wiley & Sons: Hoboken, NJ, USA, 2014.

9. Bozkir, A.S.; Tahillioglu, E.; Aydos, M.; Kara, I. Catch Them Alive: A Malware Detection Approach through Memory Forensics,
Manifold Learning and Computer Vision. Comput. Secur. 2021, 103, 061102. [CrossRef]

10. Majd, A.; Vahidi-Asl, M.; Khalilian, A.; Poorsarvi-Tehrani, P.; Haghighi, H. SLDeep: Statement-level software defect prediction
using deep-learning model on static code features. Expert Syst. Appl. 2020, 147, 113156. [CrossRef]

11. Jiang, F.; Cai, Q.; Lin, J.; Luo, B.; Guan, L.; Ma, Z. TF-BIV: Transparent and Fine-Grained Binary Integrity Verification in the
Cloud. In Proceedings of the 35th Annual Computer Security Applications Conference, San Juan, PR, USA, 9–13 December
2019; pp. 57–69.

12. Zhang, Y.; Liu, Q.Z.; Li, T.; Wu, L.; Shi, C. Research and development of memory forensics. Ruan Jian Xue Bao/J. Softw. 2015,
26, 1151–1172.

13. Kawakoya, Y.; Shioji, E.; Otsuki, Y.; Iwamura, M.; Miyoshi, J. Stealth Loader: Trace-free Program Loading for Analysis Evasion.
J. Inf. Process. 2018, 26, 673–686. [CrossRef]

14. Uroz, D.; Rodríguez, R.J. On Challenges in Verifying Trusted Executable Files in Memory Forensics. Forensic Sci. Int. Digit.
Investig. 2020, 32, 300917. [CrossRef]

15. Cheng, Y.; Fu, X.; Du, X.; Luo, B.; Guizani, M. A lightweight live memory forensic approach based on hardware virtualization. Inf.
Sci. 2017, 379, 23–41. [CrossRef]

16. Palutke, R.; Block, F.; Reichenberger, P.; Stripeika, D. Hiding process memory via anti-forensic techniques. Forensic Sci. Int. Digit.
Investig. 2020, 33, 301012. [CrossRef]

17. Wang, L. Research on Online Forensics Model and Method Based on Physical Memory Analysis. Ph.D. Thesis, Shandong
University, Jinan, China, 2014.

18. Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.; Nicholas, C. Malware Detection by Eating a Whole Exe. In Proceedings
of the Work-Shops at the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

19. Marín, G.; Caasas, P.; Capdehourat, G. Deepmal-deep learning models for malware traffic detection and classification. Data Sci.
-Anal. Appl. 2021, 105–112.

20. Li, H.; Zhan, D.; Liu, T.; Ye, L. Using Deep-Learning-Based Memory Analysis for Malware Detection in Cloud. In Proceedings of
the 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW), Monterey, CA, USA,
4–7 November 2019; pp. 1–6.

21. Zhang, Y.; Li, B. Malicious Code Detection Based on Code Semantic Features. IEEE Access 2020, 8, 176728–176737. [CrossRef]
22. Wadkar, M.; Di Troia, F.; Stamp, M. Detecting malware evolution using support vector machines. Expert Syst. Appl. 2020,

143, 113022. [CrossRef]
23. Han, W.; Xue, J.; Wang, Y.; Liu, Z.; Kong, Z. MalInsight: A systematic profiling based malware detection framework. J. Netw.

Comput. Appl. 2019, 125, 236–250. [CrossRef]
24. Huang, X.; Ma, L.; Yang, W.; Zhong, Y. A Method for Windows Malware Detection Based on Deep Learning. J. Signal Process. Syst.

2020, 93, 265–273. [CrossRef]
25. Lu, X.D.; Duan, Z.M.; Qian, Y.K.; Zhou, W. Malicious code classification method based on deep forest. Ruan Jian Xue Bao/J. Softw.

2020, 31, 1454–1464.
26. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
27. Wei, Y.; Chow, K.P.; Yiu, S.M. Insider threat prediction based on unsupervised anomaly detection scheme for proactive forensic

investigation. Forensic Sci. Int. Digit. Investig. 2021, 38, 301126. [CrossRef]
28. Le, H.V.; Ngo, Q.D. V-sandbox for dynamic analysis IoT botnet. IEEE Access 2020, 8, 145768–145786. [CrossRef]
29. Urooj, U.; Al-Rimy, B.A.S.; Zainal, A.; Ghaleb, F.A.; Rassam, M.A. Ransomware detection using the dynamic analysis and machine

learning. Appl. Sci. 2021, 12, 172. [CrossRef]
30. Shree, R.; Shukla, A.K.; Pandey, R.P.; Shukla, V.; Bajpai, D. Memory forensic: Acquisition and analysis mechanism for operating

systems. Mater. Today Proc. 2022, 51, 254–260. [CrossRef]
31. Jin, X.; Xing, X.; Elahi, H.; Wang, G.; Jiang, H. A Malware Detection Approach using Malware Images and Autoencoders.

In Proceedings of the 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Virtual,
10–13 December 2020; pp. 1–6.

32. Singh, J.; Thakur, D.; Gera, T.; Shah, B.; Abuhmed, T.; Ali, F. Classification and analysis of android malware images using feature
fusion technique. IEEE Access 2021, 9, 90102–90117. [CrossRef]

33. Xiao, X.; Zhang, S.; Mercaldo, F.; Hu, G.; Sangaiah, A.K. Android malware detection based on system call sequences and LSTM.
Multimed. Tools Appl. 2019, 78, 3979–3999. [CrossRef]

34. Khalil, F.; Pipa, G. Is deep-learning and natural language processing transcending the financial forecasting? Investigation through
lens of news analytic process. Comput. Econ. 2022, 60, 147–171. [CrossRef]

35. Ren, G.; Yu, K.; Xie, Z.; Liu, L.; Wang, P.; Zhang, W.; Wang, Y.; Wu, X. Differentiation of lumbar disc herniation and lumbar spinal
stenosis using natural language processing–based machine learning based on positive symptoms. Neurosurg. Focus 2022, 52, E7.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.cose.2020.102166
http://doi.org/10.1016/j.eswa.2019.113156
http://doi.org/10.2197/ipsjjip.26.673
http://doi.org/10.1016/j.fsidi.2020.300917
http://doi.org/10.1016/j.ins.2016.07.019
http://doi.org/10.1016/j.fsidi.2020.301012
http://doi.org/10.1109/ACCESS.2020.3026052
http://doi.org/10.1016/j.eswa.2019.113022
http://doi.org/10.1016/j.jnca.2018.10.022
http://doi.org/10.1007/s11265-020-01588-1
http://doi.org/10.1016/j.fsidi.2021.301126
http://doi.org/10.1109/ACCESS.2020.3014891
http://doi.org/10.3390/app12010172
http://doi.org/10.1016/j.matpr.2021.05.270
http://doi.org/10.1109/ACCESS.2021.3090998
http://doi.org/10.1007/s11042-017-5104-0
http://doi.org/10.1007/s10614-021-10145-2
http://doi.org/10.3171/2022.1.FOCUS21561
http://www.ncbi.nlm.nih.gov/pubmed/35364584

Symmetry 2023, 15, 758 19 of 19

36. Jayasudha, J.; Thilagu, M. A Survey on Sentimental Analysis of Student Reviews Using Natural Language Processing (NLP) and
Text Mining. In Proceedings of the Innovations in Intelligent Computing and Communication: First International Conference
ICIICC 2022, Bhubaneswar, India, 16–17 December 2022.

37. Biscione, V.; Bowers, J.S. Convolutional neural networks are not invariant to translation, but they can learn to be. arXiv 2021,
arXiv:2110.05861.

38. Ahmad, I.; Alqarni, M.A.; Almazroi, A.A.; Tariq, A. Experimental Evaluation of Clickbait Detection Using Machine Learning
Models. Intell. Autom. Soft Comput. 2020, 26, 1335–1344. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.32604/iasc.2020.013861

	Introduction
	Related Work
	Memory Forensics
	Malware Detection

	Memory PE File Extraction Technology
	Memory Analysis
	Memory Forensics

	The Approach
	Gathering Memory Data
	Dataset Preprocessing
	Data Type Conversion
	Segment Selection

	Our Model
	Neural Network Algorithm

	Experimental Overview
	Operating Environment and Datasets
	Evaluation Metrics
	Datasets Parameter Optimization
	Sample Fragments of Different Lengths
	Sample Fragments of Different Lengths
	Comparison of Different Models
	Example of Fileless Malware Detection

	Summary and Future Prospect
	References

