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Abstract: Gaussian Mixture Models (GMMs) are used in many traditional expert systems and modern
artificial intelligence tasks such as automatic speech recognition, image recognition and retrieval,
pattern recognition, speaker recognition and verification, financial forecasting applications and
others, as simple statistical representations of underlying data. Those representations typically
require many high-dimensional GMM components that consume large computing resources and
increase computation time. On the other hand, real-time applications require computationally efficient
algorithms and for that reason, various GMM similarity measures and dimensionality reduction
techniques have been examined to reduce the computational complexity. In this paper, a novel
GMM similarity measure is proposed. The measure is based on a recently presented nonlinear
geometry-aware dimensionality reduction algorithm for the manifold of Symmetric Positive Definite
(SPD) matrices. The algorithm is applied over SPD representations of the original data. The local
neighborhood information from the original high-dimensional parameter space is preserved by
preserving distance to the local mean. Instead of dealing with high-dimensional parameter space,
the method operates on much lower-dimensional space of transformed parameters. Resolving
the distance between such representations is reduced to calculating the distance among lower-
dimensional matrices. The method was tested within a texture recognition task where superior state-
of-the-art performance in terms of the trade-off between recognition accuracy and computational
complexity has been achieved in comparison with all baseline GMM similarity measures.

Keywords: Gaussian Mixture Models; similarity measures; dimensionality reduction; texture recognition

MSC: 68T01; 97R40

1. Introduction

Gaussian Mixture Models play an important role in various artificial intelligence
and machine learning tasks, such as computer vision, natural language processing, data
clustering, classification, and recognition, due to their simplicity and capability to model
any probability density function knowing the exact number of modes. GMMs are success-
fully used in automatic speech recognition [1], speaker verification and recognition [2],
image retrieval [3], pattern recognition [4], genre classification [5], age and gender recogni-
tion [6] as well as economy [7], mechanics [8], robotics [9], and numerous other research
areas. They are also exceptionally popular as input and/or output data representations
in deep learning [10]. At the same time, complex machine learning systems often com-
prise high-dimensional feature representations. Finding efficient and precise similarity
measures between GMMs involving proper dimensionality reduction techniques to reduce
computational complexity and consequently, execution times, became an imperative.

Numerous GMM similarity measures have been proposed in the literature. Infor-
mational distances among probability distributions, such as Chernoff, Bhattacharyya,
or Matusita [11], have been thoroughly analyzed and explored. Nevertheless, the Kull-
back–Leibler (KL) divergence [12] emerged as the most natural and effective informational
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distance measure between two probability distributions. A solution for the KL divergence
among two Gaussian components exists in the analytic, i.e., closed form. However, a
closed-form solution for the KL divergence between arbitrary GMMs cannot be analytically
expressed, nor does any computationally efficient algorithm exist. Consequently, various
more or less computationally expensive approximation functions have been proposed in
recent years. The Monte Carlo sampling method [13] offers an arbitrary accurate, com-
putationally expensive solution, often inappropriate for real-time classification and/or
recognition tasks. Other approximations of the KL divergence among two GMMs have also
been proposed [14], such as the variational approximation and the variational upper bound,
an approximation based on the unscented transform, or the matched bound approximation,
performing poorly on GMMs comprising a few low-probability components. In [15], the so-
called Gaussian Quadratic Form Distance (GQFD) with a closed-form solution for GMMs of
diagonal covariance matrices is presented. A multivariate online Kernel Density Estimation
(KDE) has been proposed in [16]. The KDE enables building PDFs from data by observing
only a single data point at a time. In [17], a metric on the space of multivariate Gaussian
distributions based on the fundamental idea of parametrizing the space as the Riemannian
symmetric space is proposed. In [18], a robust and efficient sparse representation-based
Earth Mover’s Distance (EMD) is presented. The EMD uses an effective pair-wise-based
method to learn EMD metrics among GMMs, along with two ground distances between
Gaussian components based on the information geometry, obtained by embedding the
space of Gaussians into a Lie group or regarding it as the product of Lie groups, to measure
the intrinsic distance between Gaussians in the underlying Riemannian manifold. The
method is additionally improved and extended in [19], also including a study on various
image features for GMM matching, such as the Gabor filter, Local Binary Pattern descriptor,
SIFT, covariance descriptor and high-level features extracted by deep convolution net-
works. Computational efficiency, as well as the accuracy of these approximations, have
been confirmed in most cases by experiments on both real and synthetic data.

Defining the proper feature space dimensionality reduction technique to resolve
computational complexity and cope with the problems of data sparsity and the curse of
dimensionality is another challenging issue. In miscellaneous natural language processing,
speech recognition and synthesis, emotion recognition, image recognition and retrieval
and other machine learning tasks, feature vectors contain hundreds or even thousands
of features. Diverse dimensionality reduction techniques have been designed to reduce
computational complexity, aiming to keep the same or at least highly comparable accuracy.
For instance, the Principal Geodesic Analysis (PGA) tries to map SPD matrices into a tangent
by maximizing the variability of the mapped data points [20]. Nonlinear dimensionality
reduction algorithms such as Locally Linear Embedding (LLE) and Laplacian Eigenmaps
(LE) provide embeddings into lower dimensional space based on Riemannian geometry [21].
The LE method uses the connection between the Laplace Beltrami operator and the graph
Laplacian to construct representation with locally preserving properties [22]. Locality
Preserving Projections (LPP), an approach based on the LE, was developed as an alternative
to the Principal Component Analysis (PCA). The LPP tends to learn linear projective maps
by solving a variational problem that optimally preserves the local neighborhood structure
of the original dataset in the transformed space [23]. On the other hand, kernel approaches,
like those presented in [24], try to embed feature matrices in a Reproducing Kernel Hilbert
Space. Dimensionality reduction is then performed using various kernel-based methods.
Finally, the idea behind manifold learning techniques is to increase discrimination of
the transformed features by projecting those features to a lower dimensional manifold
embedded in a subspace of the original high dimensional feature space [25]. Supervised
methods, such as Linear Discriminant Analyses (LDA) or the Maximum Margin Criterion
(MMC) as well as unsupervised methods, like the Principal Component Analysis, are some
of the most popular manifold learning representatives. Unlike the PCA which aims to
preserve the global structure of the data, the LPP tends to preserve the local structure of
the data. Therefore, it may keep more discriminating information, assuming that samples
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from the same class are close to each other in the input space. Neighborhood Preserving
Embedding (NPE) is yet another methodology aiming to preserve the local neighborhood
structure on a data manifold. The NPE is able to learn not only the projective matrix but
also the weights extracting the neighborhood information in the original feature space [26].

Two different dimensionality reduction methods have been analyzed and compared
in our previous work. The first one was based on an LPP-like projection of the parame-
ter space [27]. The LLP-based GMM similarity measure was used to calculate the linear
transformation matrix that projects the vectorized parameters of Gaussian components of
arbitrary GMMs into a low-dimensional Euclidean space. At the same time, the distinc-
tiveness of the original feature space is preserved in lower-dimensional space. Both the
symmetric and the nonsymmetric version of the LPP-based GMM similarity measure has
been developed, utilizing the symmetric or the one-sided KL divergence between Gaussian
components corresponding to GMMs. The other one assumes that the parameters of full
covariance Gaussians lie close to each other in a lower-dimensional surface embedded
in the cone of positive definite matrices. This is contrary to the assumption that data
themselves lie on the lower-dimensional manifold embedded in the feature space [28]. The
NPE-based idea has been employed to evaluate the projection matrix. The matrix is then
applied to the parameter space of Gaussian components, by projecting the parameters of
Gaussian components into lower-dimensional Euclidean vectors.

Recently, a novel geometry-aware dimensionality reduction technique has been pre-
sented [29]. This technique tends to preserve the local structure of the data by Distance
Preservation to the Local Mean (DPLM), considering the geometry of the SPD matrices.
Based on this approach, a novel GMM similarity measure is proposed in the paper. The
method utilizes the fact that the space of multivariate Gaussians is a Riemannian manifold
that can be embedded into the cone of SPD matrices. Both the supervised and unsupervised
version of the DPLM algorithm has been employed. Baseline KL-based GMM similarity
measures are then applied over low-dimensional feature matrices, i.e., GMM projections,
preserving the locality induced by the manifold structure from the original parameter
space, while achieving significantly lower computational cost. A much better trade-off
between the recognition accuracy and the computational complexity has been achieved
in comparison to KL-based distance approximations calculated between GMMs from the
original parameter space. Experiments are conducted within a texture recognition task, but
the proposed method is suitable for any big-data artificial intelligence system using a large
number of GMMs as well as high dimensional features.

The paper is organized as follows. In Section 2, we start with a review of baseline KL-
based GMM similarity measures presented in the literature. We then propose a novel GMM
similarity measure motivated by the geometry-aware dimensionality reduction algorithm
presented in [29], projecting the original feature space into a low-dimensional feature space.
Computational complexities in the recognition phase are also estimated. In Section 3, we
compare and discuss the results obtained using the proposed DPLM-based and baseline
KL-based similarity measures within a texture recognition task conducted on three publicly
available image databases (UIUC [30], KTH-TIPS [31], and UMD [32] database). In all
examined cases, the results obtained using the proposed method were highly superior
concerning the trade-off between accuracy and computational complexity compared to all
baseline methods. The paper is summarized in Section 4. Author contributions, funding
and data availability statement are provided at the end of the manuscript.

2. Materials and Methods

In the following section, we will discuss baseline GMM similarity measures based on
some of the most popular KL divergence approximations presented in the literature and
propose a novel geometry-aware GMM similarity measure constructed using a nonlinear
geometry-aware dimensionality reduction algorithm for the manifold of SPD matrices. At
the end of the section, we will estimate the computational complexities of the proposed
and baseline GMM similarity measures.
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2.1. KL-Based GMM Similarity Measures

The KL divergence measures how much one probability distribution differs from
another probability distribution [33]. Although there are other loss functions, the KL
divergence is used as a fundamental equation in information theory and the most natural
solution in many machine learning tasks dealing with probability distributions. For two
probability distributions p and q, the measure is defined as KL(p||q) =

∫
Rd p(x) log p(x)

q(x) dx.
For two simple Gaussians p̂ and q̂, it can be computed easily using an intuitive closed-form
solution given by

KL( p̂||q̂) =
1
2
[log
|Σq̂|
|Σ p̂|

+ Tr
[
Σ−1

q̂ Σ p̂

]
+ (µ p̂ − µq̂)

TΣ−1
q̂ (µ p̂ − µq̂)− d], (1)

where d is the dimensionality of Gaussians p̂ and q̂, µ and Σ are their mean vectors and
covariance matrices, and Tr is the trace function, i.e., the sum of elements on the main
diagonal. On the other hand, there is no closed-form solution for the KL divergence
between two GMMs.

The Monte Carlo (MC) sampling [14] is a straightforward and the most accurate,
although computationally extremely expensive solution for the KL divergence between
two different GMMs. The idea is to sample the probability distribution p using inde-
pendent and identically distributed (i.i.d.) random samples xi, i = 1, . . . , N, so that
KL(p||q) = Ep

[
ln p(x)

q(x)

]
. Using N samples, we obtain

KLMC(p||q) = 1
N

N

∑
i=1

ln
p(xi)

q(xi)
→ KL(p||q), (2)

as N → ∞. The variance of the estimation error is now computed as 1
n Varp

[
log p

q

]
. Unfor-

tunately, the solution is unacceptably time-consuming and expensive for most real-world
and big-data applications, which is why various approximations of the KL divergence are
proposed for estimating the KL divergence between two GMMs accurately and efficiently.

The roughest approximation is based on the convexity of the KL divergence. The upper
bound of the KL divergence [34] between two GMMs p = ∑n

i=1 αi pi and q = ∑m
j=1 β jqj is

given by

KL(p||q) ≤∑
i,j

αiβ jKL(pi||qj),

where pi = N (Σi, µi) and qj = N (Σj, µj) are Gaussian components of the corresponding
mixtures, αi > 0 and β j > 0 are the corresponding weights, satisfying ∑i αi = 1, ∑j β j = 1,
and KL(pi||qj) can be computed using (1), yielding the Weighted Average (WA) approximation

KLWA(p||q) ≈∑
i,j

αiβ jKL(pi||qj). (3)

KLWA approximation is computationally much more efficient than KLMC approxi-
mation. However, this approximation is too crude in cases when each mixture density is
composed of unimodal distributions and the modes are far apart [34].

Various other approximations of the KL divergence between two GMMs have been
proposed and applied in several machine learning tasks, such as speech recognition, image
retrieval and speaker identification [34–36]. The Matching-Based (MB) Approximation [34]
given by

KLMB(p||q) ≈∑
i

αi min
j

[
KL(pi||qj) + log

(
αi
β j

)]
(4)
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is based on the assumption that the element qj that is most proximal to pi dominates the
integral

∫
pi log q. A more efficient matching based approximation has also been proposed,

given by

KLMBS(p||q) ≈∑
i

αi min
j

KL(pi||qj). (5)

This approximation provides good performances when the Gaussian components
of p and q are mostly far apart. However, KLMBS is inappropriate in cases when there
is significant overlapping among Gaussians from p and q. The Unscented Transform
based approximation which uses the unscented estimator similar to the Monte Carlo
approximation, except the samples are chosen deterministically, provides a way to deal
with GMMs overlapping.

The Unscented Transform (UC) is a mathematical function used to estimate the results
of applying a nonlinear transformation to a probability distribution characterized in terms
of a finite set of statistics [35]. Assuming that KL(p||q) =

∫
Rd p log p −

∫
Rd p log q, the

unscented transform approach tends to approximate the integral
∫
Rd pi log q as

∫
Rd

pi log q ≈ 1
2d

2d

∑
k=1

log q(xi,k), (6)

xi,k = µi +
(√

Σi

)
k
, k = 1, . . . , d, (7)

xi,d+k = µi −
(√

Σi

)
k
, k = 1, . . . , d, (8)

(√
Σi
)

k is the kth column of the matrix square root of Σi. Approximating the integral∫
Rd p log q, we obtain

∫
Rd

p log q ≈ 1
2d

n

∑
i=1

αi

2d

∑
k=1

log q(xi,k). (9)

Approximating the second integral
∫
Rd p log p in similar manner, the KLUC(p||q)

is obtained.
The Variational Approximation (VA) [14,36] is given by

KLVA(p||q) = ∑
i

αi
∑i′ αi′ e−KL(pi ||pi′ )

∑j β je
−KL(pi ||qj)

(10)

This approximation utilizes the KL divergence between the Gaussian components in
order to obtain an approximate KL divergence between the full GMMs p and q. This is a
simple, closed-form expression.

2.2. DPLM-Based GMM Similarity Measure

To construct a novel DPLM-based GMM similarity measure and decrease the compu-
tational cost, we propose the following procedure:

1. The original set of Gaussian mixture components is embedded into the cone of
SPD matrices;

2. A nonlinear geometry-aware dimensionality reduction algorithm for the manifold of
SPD matrices [29] is applied to obtain a projection matrix, providing a low dimensional
representation of the manifold by preserving the distance to the local mean (DPLM);

3. The embeddings are projected into a lower dimensional space using the projection
matrix, where baseline KL-based measures can now be used to measure how much
one GMM differs from another in a cost-efficient way.
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A Riemannian manifold is a real, smooth manifold with a Riemannian metric, equipped
with a positive-definite inner product on the tangent space at each point that varies
smoothly from point to point, providing local notions of angle, length of curves, surface
area and volume [37]. A set of d× d SPD matrices denoted by Sym+(d) is a differentiable
manifold with a natural Riemannian structure. To obtain the projection matrix using the
proposed nonlinear geometry-aware dimensionality reduction algorithm for the manifold
of SPD matrices [29], we use the fact that a set of multivariate Gaussians is a Riemannian
manifold and that any d-dimensional multivariate Gaussian g = N (µ, Σ) can be embedded
into the cone of SPD matrices Sym+(d + 1) in the following way

g ↪→ P = |Σ|−
1

d+1

[
Σ + µµT µ

µT 1

]
(11)

where |Σ| > 0 denotes the determinant of the covariance matrix of Gaussian component
g [18]. All information regarding the particular Gaussian component N (µ, Σ) of a given
GMM is now contained in a single positive definite matrix P, an element of Sym+(d + 1).

The aim is to find a projection matrix W, mapping the above-mentioned embeddings
into Sym+(l), where l < d. The local structure is preserved in lower dimensional represen-
tation by preserving distance to the local mean, i.e., by calculating the Riemannian mean
of the K-nearest neighbors of each embedding in order to find a projection matrix that
preserves distances between nearest neighbors and their means.

Let us assume we have obtain a set of N (d + 1)-dimensional embeddings {(P1, c1),
(P2, c2), . . . , (PN , cN)} where Pi ∈ Sim+(d + 1), ci is a corresponding class label, and
Ni = {Pi,1, Pi,2, . . . , Pi,K}, 1 ≤ i ≤ N, is the set of K nearest neighbors of Pi. In the case
of the supervised version of the algorithm, K-nearest neighbors are selected only among
embeddings which have the same class label as the current embedding. The Riemannian
mean of each set Ni denoted by N̂i is calculated using equation

N̂i = argmin
P∈Sim+(d+1)

K

∑
k=1

δ2
g(P, Pi,k), (12)

where δ2
g is Affine Invariant Riemannian Metric [38], given by

δ2
g(P, Q) = ‖log(PQ−1)‖2

F. (13)

The projection matrix W can now be calculated by solving optimization problem given by

min
W∈R(d+1)×l

H(W), WT ×W = Il , (14)

where Il is an l × l identity matrix, and

H(W) =
N

∑
i=1

K

∑
k=1

∣∣δ2
ld(Pi,k, N̂i)− δ2

ld(W
T Pi,kW, WT N̂iW)

∣∣, (15)

where
δ2

ld(P, Q) =
√

J(P, Q), (16)

and J(P, Q) is the Jensen–Bregman LogDet Divergence [39], given by

J(P, Q) = logdet(
P + Q

2
)− 1

2
logdet(PQ). (17)
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The gradient of H(W) with respect to W can be computed as

∂H(W)

∂W
= −

N

∑
i=1

K

∑
k=1

[
sgn
(
δ2

ld(Pi,k, N̂i)− δ2
ld(W

T Pi,kW, WT N̂iW)
)
×

(
(Pi,k + N̂i)W(WT Pi,k + N̂i

2
W)−1 − Pi,kW(WT Pi,kW)−1 − N̂iW(WT N̂iW)−1)],

(18)

where sgn is the sign function, using the prior knowledge

δ2
ld(W

T PW,WT QW)
∂W = (P + Q)W(WT P+Q

2 W)−1 − PW(WT PW)−1 −QW(WTQW)−1. (19)

The lower dimensional projection of Pi ∈ Sim+(d + 1) can now be computed as

P′i = WT PiW ∈ Sim+(l), (20)

and used as the original GMM representative inside Equations (3), (4) and (10), provid-
ing computationally efficient DPLM-based approximations sDPLMWA, sDPLMMB and
sDPLMVA for the supervised, and uDPLMWA, uDPLMMB and uDPLMVA for the un-
supervised version of the above-mentioned algorithm. Namely, the GMMs p and q in
Formulas (3), (4) and (10) are obtained as lower-dimensional projections of the original
(d + 1)-dimensional embeddings given in the form of symmetric positive definite matrices
obtained by (11), using the projection matrix W, calculated by solving the optimization
problem given by (14) and introduced into the expression (20). As previously explained,
for sDPLMWA, sDPLMMB and sDPLMVA, K nearest neighbors (see expression (12)) are
selected only among embeddings which have the same class label as the current embed-
ding. In the case of uDPLMWA, uDPLMMB and uDPLMVA, no such requirement has
been applied.

2.3. Computational Complexity

In the following subsection, we’ll define the computational cost of the above-mentioned
algorithms in the testing phase, bearing in mind that computational cost in the training
phase is not crucial for employment.

Let us assume, without loss of generality, that GMMs p and q have the same number
of components m, represented using full covariance matrices, and d is the dimension of the
original feature space.

The computational complexity of the Monte Carlo approximation KLMC is estimated
as O(Nmd3), where N is the number of samples. However, to obtain an efficient KL
divergence approximation, the number of i.i.d. samples N must be very large, i.e., N >> m.

The complexity of the KL-based measures KLWA, KLMB and KLVA is roughly equiva-
lent and estimated as O(m2d3). The complexity of calculating the KL divergence between
two d-variate Gaussians is of order O(d3). This complexity is approximately equal to the
complexity of calculating the inversion of a d× d matrix. Since there are m2 such inversions,
we obtain the previous estimate.

According to [40], the complexity of multiplications between (d × d)-dimensional
embeddings Pi and (d× l)-dimensional projection matrix W is estimated as O(ld2) +O(dl2)
based on expression (20) (both left and right multiplications). There are m such multi-
plications, so the complexity is calculated as O(mld2) + O(mdl2). The complexity of the
KL-based measures applied over (l × l)-dimensional projections is roughly estimated as
O(m2l3), as previously explained. Therefore, the complexity of the proposed DPLM-based
solutions, namely, the sDPLMWA, sDPLMMB, sDPLMVA, uDPLMWA, uDPLMMB and
uDPLMVA is now estimated as O(m2l3) + O(mld2) + O(mdl2), where l is the dimension
of the transformed feature space.
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3. Results and Discussion

In this section, we present the results obtained using novel DPLM-based GMM simi-
larity measures proposed in Section 2.2 with baseline KL-based GMM similarity measures
described in Section 2.1. The algorithms were evaluated in a texture recognition task. The
system was trained using data extracted from three publicly available corpora—the UIUC
texture database (named after the University of Illinois Urbana-Champaign), the KTH-TIPS
image database (KTH is an abbreviation of the Royal Institute of Technology while TIPS
stands for Textures under varying Illumination, Pose and Scale), and the UMD texture
dataset (named after the University of Maryland). Concerning the UIUC database, 5 classes
have been extracted (wood, water, granite, marble, and floor), taken at 640× 480 pixels.
In the case of KTH-TIPS, we also took 5 classes (aluminum foil, brown bread, corduroy,
cotton, and cracker), and the images were cropped at 200× 200 pixels. Finally, for the third
database, we used sample images from classes 2 (paint cans), 3 (stones), 8 (brick walls), 9
(apples) and 12 (textile patterns), sampled at 1280× 960 pixels. Selected samples from all
three databases are shown in Figure 1.

Figure 1. Samples extracted from UIUC, KTH-TIPS and UMD databases.

For the purposes of experiments, KLWA, KLMB and KLVA, defined by
Equations (3), (4) and (10), were selected as baseline GMM similarity measures. Both the super-
vised (sDPLMWA, sDPLMMB, sDPLMVA) and the unsupervised (uDPLMWA, uDPLMMB,
uDPLMVA) versions of DPLM-based GMM similarity measures were applied. Compared to
all baseline measures, a significantly better trade-off between computational cost and accuracy
was obtained for the proposed DPLM-based GMM similarity measures.

Region covariance descriptors proposed in [41] were used as texture features since
they have already shown good performance in various texture recognition tasks. They were
formed in the following way. For any given image, patches of size 128× 128 for the UIUC
(step 16), 40× 40 for the KTH-TIPS (step 5), or 256× 256 for the UMD database (step 32)
were extracted. For every pixel positioned at (x, y), features were calculated in a form
[I, |Ix|, |Iy|, |Ixx|, |Iyy|], where I represents illumination, Ix and Iy are the first, and Ixx and
Iyy are the second-order derivatives (meaning that the actual dimension of feature vectors
was d̂ = 5). Covariance matrices were calculated using these features and additionally
vectorized by aligning their upper triangular values into d = d̂(d̂ + 1)/2 = 15-dimensional
feature vectors. The parameters of GMMs were then estimated using the Expectation
Maximization (EM) algorithm [42] applied over the pool of feature vectors obtained as
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previously described. Every sample image was uniformly divided into four sub-images
represented by four GMMs, which were then used for training and testing purposes. Every
GMM (or its low-dimensional projection in the case of DPLM-based algorithms) was
compared to all other GMMs in the train set and its label was determined as a majority
vote over 5 nearest neighbors, using the K-Nearest Neighbors algorithm (KNN), and in the
case of DPLM-based algorithms, the GMMs were embedded into the cone of SPD matrices
Sym+(16).

In Tables 1–3, the recognition accuracies are presented for the proposed DPLM-based
measures as well as baseline KL-based measures. Each GMM was represented using one
to ten Gaussian components (m ∈ {1, 5, 10}). For the case of DPLM-based measures, the
number of nearest neighbors of any current embedding was set to K = 3, and the projection
dimension was set to l ∈ {5, 7}, providing projection matrices of size 16× 5 and 16× 7,
respectively, i.e., less than a half of the original feature space dimension.

Table 1. Recognition accuracies for DPLM-based and KL-based measures on the UIUC database.

GMM Sim. Meas. Accuracy

m = 1 m = 5 m = 10

KL-MB 0.82 0.80 0.80
KL-WA 0.82 0.82 0.82
KL-VA 0.82 0.82 0.82

l = 5 l = 7 l = 5 l = 7 l = 5 l = 7

uDPLM-MB 0.72 0.81 0.73 0.74 0.79 0.79
uDLPM-WA 0.72 0.81 0.73 0.74 0.80 0.80
uDLPM-VA 0.72 0.81 0.73 0.74 0.80 0.80

sDPLM-MB 0.73 0.80 0.73 0.74 0.79 0.72
sDLPM-WA 0.73 0.80 0.73 0.74 0.80 0.73
sDLPM-VA 0.73 0.80 0.73 0.74 0.80 0.73

Table 2. Recognition accuracies for DPLM-based and KL-based measures on the KTH-TIPS database.

GMM Sim. Meas. Accuracy

m = 1 m = 5 m = 10

KL-MB 0.78 0.74 0.75
KL-WA 0.78 0.78 0.78
KL-VA 0.78 0.78 0.78

l = 5 l = 7 l = 5 l = 7 l = 5 l = 7

uDPLM-MB 0.57 0.73 0.69 0.71 0.63 0.72
uDLPM-WA 0.57 0.73 0.72 0.75 0.64 0.75
uDLPM-VA 0.57 0.73 0.72 0.75 0.63 0.75

sDPLM-MB 0.56 0.74 0.66 0.71 0.63 0.71
sDLPM-WA 0.56 0.74 0.70 0.75 0.64 0.73
sDLPM-VA 0.56 0.74 0.69 0.75 0.63 0.73

For each class, a fixed number of samples was randomly selected, keeping the rest
for testing. For l = 7, the accuracies obtained using the baseline KL-based measures and
the full covariance matrices were in most cases only slightly, i.e., less than 5% better than
the results obtained using the proposed DPLM-based measures and the reduced-sized
representatives. The difference was somewhat more significant for l = 5, but on the
other hand, the recognition time was reduced by more than third in comparison to all
baseline measures. No significant difference has been observed between the supervised
and the unsupervised version of the proposed algorithm, probably because we used a
relatively small value for K, which is why most nearest neighbors belonged to the same
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class even for the unsupervised version, but this will be additionally examined in the future.
Recall that computational complexities of the proposed DPLM-based algorithms were
roughly estimated as O(m2l3) + O(mld2) + O(mdl2). At the same time, computational
complexities of baseline KL-based measures were estimated as O(m2d3). The ratio between
the computational complexity of the proposed DPLM-based and any mentioned baseline
KL-based measures is therefore largely in favor of the proposed DPLM-based measures.

Table 3. Recognition accuracies for DPLM-based and KL-based measures on the UMD database.

GMM Sim. Meas. Accuracy

m = 1 m = 5 m = 10

KL-MB 0.75 0.73 0.72
KL-WA 0.75 0.75 0.75
KL-VA 0.75 0.75 0.75

l = 5 l = 7 l = 5 l = 7 l = 5 l = 7

uDPLM-MB 0.73 0.74 0.72 0.72 0.70 0.72
uDLPM-WA 0.73 0.74 0.73 0.74 0.71 0.75
uDLPM-VA 0.73 0.74 0.73 0.74 0.71 0.75

sDPLM-MB 0.75 0.75 0.73 0.72 0.71 0.71
sDLPM-WA 0.75 0.75 0.71 0.73 0.72 0.74
sDLPM-VA 0.75 0.75 0.71 0.73 0.72 0.74

In Figures 2–4, CPU processing times during the test phase are presented for the
proposed DPLM-based and baseline KL-based algorithms (DPLMWA vs. KLWA DPLMMB
vs. KLMB, and DPLMVA vs. KLVA, for the UIUC database. Note that the CPU times include
not only the given measures but the whole testing procedure, i.e., they also comprise
the final voting, meaning that the results would otherwise be even more in favor of the
proposed DPLM-based algorithms vs. the KL-based algorithms. In Figures 5–7, the same
results are presented for the experiments conducted using the KTH-TIPS database. The results
of experiments conducted using the UMD database are presented in Figures 8–10. It can be
concluded that the proposed measures provide significantly lower CPU processing times
in comparison to all baseline measures due to a significant reduction in the dimensionality
of the original feature space.

The experiments on UMD and UIUC databases were conducted on a workstation
equipped with AMD Ryzen™ 7 5800H processor, 3.20 GHz, 8 cores, 16 threads, 16 MB
cache, 16 GB (2× 8 GB) DDR4 3200 MHz RAM. The experiments on the KTH-TIPS database
were conducted on a workstation equipped with Intel® Core™ i5-4690 processor, 3.50 GHz,
4 cores, 4 threads, 6 MB cache and 16 GB (2× 8 GB) DDR3 1600 MHz RAM. Differences in
execution times among repeated experiments for the same configuration were statistically
negligible, i.e., the measurements are reproducible and consistent. Bearing in mind the
purpose of these experiments, we did not care about total execution times, i.e., their absolute
values, as long as all experiments are conducted on the same hardware for a single database.
In fact, we only cared about statistical differences, i.e., ratios between the baseline and the
proposed algorithms for different configurations used in the paper.

The proposed methodology could also be applied in various other tasks and learning
methodologies comprising models trained during a learning phase, such as the one pre-
sented in [43]. The transformation matrix is formed during the training. As a consequence,
the process does not consume CPU time during the employment phase. By reducing the
dimension of the original feature space, significantly better results have been obtained
concerning trade-offs between speed and accuracy in all our experiments.
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Figure 2. CPU processing times for the UIUC database, DPLMWA vs. KLWA.
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Figure 3. CPU processing times for the UIUC database, DPLMMB vs. KLMB.
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Figure 4. CPU processing times for the UIUC database, DPLMVA vs. KLVA.
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Figure 5. CPU processing times for the KTH-TIPS database, DPLMWA vs. KLWA.
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Figure 6. CPU processing times for the KTH-TIPS database, DPLMMB vs. KLMB.
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Figure 7. CPU processing times for the KTH-TIPS database, DPLMVA vs. KLVA.



Mathematics 2023, 11, 175 17 of 22

1 2 3 4 5 6 7 8 9 10

m

0

100

200

300

400

500

600

700

800

900

1000
E

x
e

c
u

ti
o

n
 t

im
e

 [
s
]

CPU Processing Times [UMD]

KL
WA

uDPLM
WA

 [l=5]

uDPLM
WA

 [l=7]

sDPLM
WA

 [l=5]

sDPLM
WA

 [l=7]

Figure 8. CPU processing times for the UMD database, DPLMWA vs. KLWA.
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Figure 9. CPU processing times for the UMD database, DPLMMB vs. KLMB.
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Figure 10. CPU processing times for the UMD database, DPLMVA vs. KLVA.
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4. Conclusions

A novel measure of similarity between GMMs based on a geometry-aware dimension-
ality reduction algorithm applied over SPD representations of the original data is proposed
in the paper. The original feature space is projected into a low-dimensional feature space,
therefore reducing the computational complexity. The method was successfully evaluated
within various texture recognition tasks. Superior results have been achieved in terms of the
trade-off between speed and accuracy in comparison to all baseline measures. We believe that
the proposed method could also be successfully applied to other classification and recognition
tasks dealing with high-dimensional Gaussian representations of underlying data.
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VA Variational Approximation
WA Weighted Average
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