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Abstract: Nowadays, there is an ever-increasing diversity of materials available, each with its own
set of features, capabilities, benefits, and drawbacks. There is no single definitive criteria for selecting
the perfect biomedical material; designers and engineers must consider a vast array of distinct
biomedical material selection qualities. The goal of this study is to establish fairly operational rules
and aggregation operators (AOs) in a linear Diophantine fuzzy context. To achieve this goal, we
devised innovative operational principles that make use of the notion of proportional distribution to
provide an equitable or fair aggregate for linear Diophantine fuzzy numbers (LDFNs). Furthermore,
a multi-criteria decision-making (MCDM) approach is built by combining recommended fairly AOs
with evaluations from multiple decision-makers (DMs) and partial weight information under the
linear Diophantine fuzzy paradigm. The weights of the criterion are determined using incomplete
data with the help of a linear programming model. The enhanced technique might be used in the
selection of compounds in a variety of applications, including biomedical programmes where the
chemicals used in prostheses must have qualities similar to those of human tissues. The approach
presented for the femoral component of the hip joint prosthesis may be used by orthopaedists and
practitioners who will choose bio-materials. This is due to the fact that biomedical materials are
employed in many sections of the human body for various functions.

Keywords: multi-criteria decision making; aggregation operators; optimization model; fairly
operations; material selection; biomedical material

MSC: 03E72; 94D05; 90B50

1. Introduction

Numerous academic fields, including sociology, epistemology, intellectual technology,
and machine learning, investigate how humans come to their conclusions and make
decisions in response to the myriad of challenges that they confront on a daily basis. In
general, several quantitative and analytical models are used in an effort to characterise
these processes. The difficulty of making decisions is a challenge that develops during
this procedure. The process of choosing one or more of the alternate forms of behaviour
faced by individuals or an organisation in order to achieve a particular goal is referred to as
“decision making”, and it is distinguished as the procedure of selecting one or more of the
available options. According to research, while it is possible to get by with making many
of your day-to-day judgments based just on gut instinct, this method is not sufficient for
making significant and important choices on its own. MCDM refers to a group of analytic
methods that analyse the benefits and drawbacks of potential options based on a number of
different factors. Methods from MCDM are utilised to provide assistance for the decision-
making process as well as to pick one or more alternatives from a group of alternatives
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featuring varying features based on criteria that are in conflict with one another or to rank
these options. In different terms, while using MCDM approaches, decision-makers evaluate
the various options based on a number of criteria in order to rank them according to the
attributes that are most important to them.

The choice of materials is one of the most important parts of the process of designing,
researching, and making products. The outcomes of the material procurement process
have a direct impact on both the product’s quality and its budget [1]. When used in a
particular product, the optimum material will allow the product to have the highest possible
performance while also having the lowest possible cost. It is thus of utmost importance
to determine how to choose the best material from among the available alternatives [2].
Because of developments in materials science and improvements in production processes,
the types of materials that may be selected are increasing in number, and the product
requirements that must be taken into account during the selection procedure are becoming
more in depth. The difficulty of selecting the appropriate material is made more difficult
by the extensive prerequisites as well as the extensive range of options. Therefore, it is
of utmost importance to investigate suitable methods to handle the problem of material
selection [3]. During the practise of selecting materials, several different product criteria,
including productivity, affordability, stability, dependability, market dynamics, fashion,
and so on, need to be taken into consideration in order to choose the best material [4].
These product needs can be thought of as selection criteria, and different materials can be
assessed using the data on the factors [5].

A bio-material, which is defined as a material meant to come into contact with bi-
ological structures, can be used to develop, treat, or modify a human tissue, muscle, or
physiological function. An implant is a device that is entirely or partly implanted un-
der the epithelial surface. Implants are defined as devices that are made of one or more
bio-materials. The body’s vastly different perimeter necessitates the use of biomedical
materials. During the course of your daily activities, the bones in your body are subjected
to a range of stressors. Similarly, when the body is in motion, orthopaedic materials are
subjected to billions of loading cycles. Fatigue resistance and mechanical toughness are
other important considerations. A number of natural and synthetic materials, referred
to together as biomedical materials, can fulfil or assist the functions of live tissues in the
human body. Because the human body is made up of proteins and oxygenated salt solu-
tions, it is reasonable to expect that these materials will not bloat, deform, or corrode as a
result of absorbing biological fluids. Under these conditions, some implant materials are
accepted by the body, while others are rejected. Materials used in bio-medicine should not
be corrosive, toxic, or carcinogenic; they should also have adequate mechanical strength;
they should not cause reactions that are not naturally occurring in the body; and they
should not decay. Biomedical materials are employed in orthopaedic applications such
as joint prostheses and skeletal appropriate substitute materials. Other applications for
these materials include frontal and reattachment surgery, dentistry, heart valves, artificial
heart parts, catheters, backbone instrumentation, fixator material, metal parts, perforated
screws, screw washers, fixator wires, nails, hip plates, angled plates, anatomical plates, and
implantable devices. Metals are the preferred material for use in the biomedical sector due
to their extended lifespan, malleability, and abrasion resistance. Metals, on the other hand,
have limited bio-compatibility, exceedingly difficult corrosion in human fluids compared to
bodily tissues, a high density, and the potential to elicit allergic tissue responses. Ceramics
are dense, hard, brittle, and difficult to manufacture materials with low mechanical prop-
erties and excellent bio-compatibility. Furthermore, ceramics offer high bio-compatibility
and corrosion resistance. Composite materials have been developed as a replacement for
less attractive materials that were previously utilised. Polymers are utilised in general
plastic surgery materials for the circulatory system and general plastic surgery operations,
as opposed to metallic bio-materials and bio-ceramics used in orthopaedic and dental
implants. Hip replacement surgery, commonly known as total hip arthroplasty, is the
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medical term for the procedure of replacing a damaged or worn out hip joint. The patient’s
native joint will be replaced with an artificial joint during this treatment.

The information regarding criteria for alternative materials is typically hazy and
imprecise. This is because human cognition is inherently cloudy, and the qualities of
materials are not always completely clear. As a result, the criteria information is better
suited for depiction by a fuzzy set (FS) [6], and the fuzzy MCDM approaches have been
utilised in order to tackle a variety of material decision issues. Despite this, the fuzzy
MCDM approach is still susceptible to the following drawbacks: the features of the material
grow increasingly complicated and unclear, and the information needed to evaluate them
cannot be adequately represented by FS. As a result, material attribute knowledge must
be expressed using a more powerful quantitative tool because: (1) the consistency of the
attribute knowledge expressed by FS is uncertain, and if the attribute knowledge is not
precise, the final outcome of the material selection will be incorrect; and (2) the consistency
of the attribute knowledge expressed by FS is uncertain.

Atanassov expanded FSs by developing the innovative concept of “intuitionistic fuzzy
sets” (IFS) [7], which is described as having a “membership degree (MSD)” and a “non-
membership degree (NMSD)” that is less than or equal to 1. When dealing with ambiguous,
unclear, or insufficient data, one of the most powerful and effective techniques has been
demonstrated to be the IFS hypothesis. This element of the IFS is important for a large
number of professionals that work with real-world scenarios within the context of an
IFS framework. In 2019, Riaz and Hashmi carried out an exhaustive evaluation of the
constraints associated with MSDs and NMSDs in the structures of FS, IFS, “Pythagorean
fuzzy set” (PFS) [8], and “q-rung orthopair fuzzy set” (q-ROFS) [9], and such limitations
were defined. They came up with the “linear Diophantine fuzzy set” (LDFS) [10] as a
solution to these problems by including IFS-specific reference parameters (RPs) into its
design. They contend that the LDFS concept will eliminate the restrictions placed on the
selection of features in exercise by the methodologies that are now in use for the various
sets, and that this will make it possible to pick features with no limits. By utilising the
arbitrary quality of the RPs, they were also able to prove that the universe of this set has
a greater number of occurrences than the FS, IFS, PFS, and q-ROFS did. Table 1 shows a
quick comparison of the proposed approach with current notions.

Table 1. Comparative analysis of LDFS with other extensions.

Concepts Remarks

FSs [6] It does not take into account NMSDs.

IFSs [7] It is inapplicable if 1 < ξI (v) + ρI (v) ≤ 2 for some v.

PFSs [8] It is inapplicable if 1 < ξ2
P (v) + ρ2

P (v) ≤ 2 for some v.

q-ROFSs [9] It is inapplicable for smaller “q” values. with 1 < ξ
q
O(v) + ρ

q
O(v) ≤ 2, or if

ξO(v) = ρO(v) = 1 for some v.

LDFSs [10]

(1) it is far capable of coping with all eventualities wherein FS, IFS, PFS, and
q-ROFS can’t be employed; (2) it takes a parameterisation technique and
operates underneath the manipulate of reference parameters; (3) MSD and
NMSD may be taken in a free way from [0, 1].

Despite the fact that much study has been done on material selection in the past, there
is a requirement for a clear and comprehensive scientific technique or computational tool
to aid user organisations in making the right material selection conclusion. A material
selection procedure’s goal is to discover material selection qualities and acquire the best
acceptable mix of material selection attributes in conjunction with actual demand. We
utilised LDFS and fairly operations to construct fairly AOs for this purpose.

The remainder of the article is structured as follows: Section 2 conducts a literature
study on the material selection process and AOs. Section 3 discusses some fundamental
LDFS definitions. Section 4 introduces some fairly operations and verifies the corresponding
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theorems. Section 5 discusses certain LDF-fairly AOs and their properties. Section 6
elaborates on the MCDM material selection approach and discusses the computation
procedure. The case study and decision-making procedure are proposed in Section 7.
Section 8 is a summary of the whole study.

2. Literature Review

This section discusses some relevant research on the MCDM approach for the selection
of materials and various AOs.

2.1. Literature Review on MCDM Method for Material Selection

The material selection technique focuses most of its research on the MCDM approach,
and it has been used a lot to solve a wide range of material selection problems. Shanian and
Savadogo [11,12] initially used the traditional MCDM techniques “Elimination and Choice
Expressing REality” (ELECTRE) and “Technique for Order Preference by Similarity to an
Ideal Solution)” (TOPSIS) to the problem of material selection. Using these approaches,
they selected the optimal materials for certain products. Liu et al. [13] introduced a unique
hybrid MCDM approach based on an enhanced version of “VIsekriterijumska Optimizacija
I Kompromisno Resenje” (VIKOR) to handle the issue of interrelated multiple factors and
industry standard in material selection.

The interval-valued VIKOR method was presented by Jahan and Edwards [14] as
a solution to the target-dependent materials selection difficulties. Peng and Xiao [15]
developed a unique MCDM approach that combines the “Preference Ranking Organisation
Methods for Enrichment Evaluations ” (PROMETHEE) and “analytic network process”
(ANP) to determine the optimal material for a given application. Rao and Davim [16] used
TOPSIS and the “analytical hierarchy process” (AHP) to handle the problem of selecting
materials for a given technological design. Moreover, Rao [4] offered a systematic procedure
for the selection of materials by combining the VIKOR and AHP. Combining AHP, grey
correlation, and TOPSIS, Tian et al. [17] developed a hybrid MCDM strategy to address
the issues involved with the selection of ecologically sustainable ornamental materials.
Zhang et al. [18] developed a hybrid MCDM approach by combining the tactical decision
and assessment laboratories, grey relational analysis, ANP, and TOPSIS to determine the
most effective environmentally friendly material. Jahan et al. [19] created an aggregation
process in an effort to address the problem of material selection. The inputs for this
approach are the material ranking orders generated by various MCDM techniques, and the
outputs are the aggregate rankings.

When there is a degree of unpredictability in the knowledge about the requirements
for materials, fuzzy MCDM is the method that is most suited for finding solutions to
material selection issues. Steel alloys materials selection difficulties were the focus of the
presentation of Wang and Chang [20] on the fuzzy MCDM technique, which proposes
that the ideal material may be identified through the aggregate and ordering of fuzzy
numbers. Rathod and Kanzaria [21] came up with the idea for an assessment model that
is based on fuzzy AHP and TOPSIS so that they could choose a suitable phase transition
material. An incorporated fuzzy MCDM technique was given by Sa et al. [22] to address
the issue of the green materials segment. This method integrates the fuzzy AHP and
fuzzy TOPSIS approaches. Girubha and Vinodh [23] came up with the idea of using the
fuzzy VIKOR approach to choose the best material for the electricity instrument cluster.
Khabbaz et al. [24] came up with a technique that is a simplified form of fuzzy logic. This
approach is able to readily cope with the qualitative character of materials and the fuzzy
space that corresponds to it, which allows for improved material selection. Material
selection was one of the applications Yang and Ju [25] used for their newly constructed
fuzzy variable, which they named uncertain member language variable. An evaluation
framework was presented by Roy et al. [26] for the purpose of solving the material selection
problem. Farid and Riaz [27] introduced Einstein interactive AOs related to a neutrosophic
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set with its use to material selection in engineering design. Zhang et al. [28] proposed the
MCDM approach for material selection based on group generalised AOs related to PFSs.

In terms of implementation possibilities, fuzzy MCDM is superior when it comes to
material selection. When it comes to material selection, expanded variants of FS such as
LDFS are utilised rather infrequently. In the same vein, the issue of determining whether or
not criteria information has been accurately represented is seldom ever researched. As a
result, the purpose of this study is to attempt to address these gaps.

2.2. Literature Review on Fuzzy AOs

AOs are capable of processing and making use of data effectively. Different AOs will
be produced as a result of different sets of rules or by focusing on various components
of the available information. Jana et al. [29] proposed a new MCDM dynamic approach
with the help of some complex AOs. Feng et al. [30] introduced some notions about IFSs.
Ashraf et al. [31] developed some sine trigonometric AOs for a single valued neutrosophic.
Liu et al. [32] introduced “power Maclaurin symmetric mean” AOs for q-ROFNs with
applications to MCDM. Xing et al. [33] presented the concept of point weighted AOs
for q-ROFNs. Liu and Wang [34] gave the idea of “Archimedean Bonferroni AOs” for
q-ROFNs. Liu et al. [35] developed a heterogeneous relationship among the criteria for
q-ROFNs. Mahmood and Ali [36] proposed complex q-ROF Hamacher AOs for MCDM.
Hussain et al. [37] proposed AOs for hesitant q-ROFSs, and Jana et al. [38] initiated the
concept of AOs for the MCDM method using a bipolar fuzzy soft set. Saha et al. [39] gave
the concept of fairly AOs for q-ROFSs.

Liu and Shi [40] presented linguistic Heronian mean AOs, Lu and Ye [41] proposed
some exponential AOs and Li et al. [42] gave generalised Einstein AOs for SVNNs. Saha
et al. [43], Wei and Zhang, and Wei and Wei [44] gave some different AOs related to
different extensions of FSs. Alcantud [45] presented some extensive results related to
soft sets. Karaaslan and Ozlu [46] developed some work related to dual type-2 hesitant
FSs. Senapati et al. [47] proposed Aczel–Alsina geometric AOs for interval-valued IFSs.
Wang and Zhang [48] introduced MCDM based on rough sets and fuzzy measures. Ger-
gin et al. [49] proposed some extensive MCDM approch for supplier selection. Narang
et al. [50] introduced the decision-making approach based on Heronian mean AOs. Kara-
maşa et al. [51] gave the idea of neutrosophic operational sciences techniques. Some brilliant
work related to some extension of fuzzy sets can be seen in [52–54].

While dominating AOs intervene to settle MCDM difficulties within the LDF framework,
they seldom investigate the impartiality of their peers when addressing with MSD and
NMSD. For instance, the values derived by AOs that previously exist in pieces of literature
cannot be distinguished when a DM supervises all MSD and NMSD for a comparable
work. This indicates that the ultimate conclusion is unquestionably biased. Thus, new
procedures are necessary to handle MSD and NMSD properly and to ensure that LDFN
operates fairly or neutrally. Using the notion of proportionate distributing rules for all
functions, we develop two neutral or fair procedures in order to attain genuine pleasure
while assessing MSD and NMSD.

As a result of this issue, the key aims of the article are as follows:

1. LDFNs are very good at tackling challenges with a two-degree complexity scale.
LDFSs are employed to develop new AOs.

2. Construct several distinct fairly or neutral procedures for handling the MSD and
NMSG using the interaction coefficient in an acceptable manner.

3. We proposed two new AOs, namely, the “linear Diophantine fuzzy fairly weighted
averaging (LDFFWA) operator” and the “linear Diophantine fuzzy fairly ordered
weighted averaging (LDFFOWA) operator”.

4. Several innovative concepts linked with freshly generated AOs for data fusion are
demonstrated by a sufficient number of illustrative cases. The suggested operators
provide information that is more general, trustworthy, and accurate than previous
methods.
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5. Using the provided AOs, a novel MCDM approach for modelling uncertainty in
material selection is developed.

3. Certain Fundamental Concepts

This portion of the article will provide various essential notions connected to LDFSs,
and it will do so in the context of the universal set X.

Definition 1 ([10]). A “linear Diophantine fuzzy set (LDFS)” < in X is defined as

< =
{(

v, 〈ξ<(v), ρ<(v)〉, 〈η<(v), β<(v)〉
)

: v ∈ X
}

,

where ξ<(v), ρ<(v), η<(v), β<(v) ∈ [0, 1] are the MSD, the NMSD and the corresponding
reference parameters (RPs), respectively. Moreover,

0 ≤ v<(v) + β<(v) ≤ 1,

and
0 ≤ η<(v)ξ<(v) + β<(v)ρ<(v) ≤ 1

for all v ∈ X. The LDFS
<X = {(v, 〈1, 0〉, 〈1, 0〉) : v ∈ X}

is known as the “absolute LDFS” in X. The LDFS

<φ = {(v, 〈0, 1〉, 〈0, 1〉) : v ∈ X}

is known as the “null LDFS” in X.

Specific components can be modeled or classified using the RPs. We can categorise dis-
tinct systems by changing the physical significance of the RPs. In addition, η<(v)π<(v) =
1− (η<(v)ξ<(v) + β<(v)ρ<(v)) is called the “indeterminacy degree” and its correspond-
ing reference parameter of v to <.

It is clear that our proposed approach is more acceptable and superior to others, and it
incorporates a diverse set of reference variables. This technique may be used for a wide
range of technological, medical, intelligent systems, and MADM applications.

Definition 2 ([10]). A “linear Diophantine fuzzy number (LDFN)” is a tuple
αγ = (〈ξαγ , ραγ〉, 〈ηαγ , βαγ〉) satisfying the following conditions:

(1) 0 ≤ ξαγ , ραγ , ηαγ , βαγ ≤ 1;
(2) 0 ≤ ηαγ + βαγ ≤ 1;
(3) 0 ≤ ηαγ ξαγ + βαγ ραγ ≤ 1.

Definition 3 ([10]). Let αγ = (〈ξαγ , ραγ〉, 〈ηαγ , βαγ〉) be a LDFN; then, the “score function”
Ῠ(αγ) can be defined by the mapping Ῠαγ) : LDFN(X)→ [−1, 1] and given by

Ῠ(αγ) =
1
2
[(ξαγ − ραγ) + (ηαγ − βαγ)]

where LDFN(X) is a collection of LDFNs on X.

Definition 4 ([10]). Let αγ = (〈ξαγ , ραγ〉, 〈ηαγ , βαγ〉) be a LDFN; then, the “accuracy function”
can be defined by the mapping Θ : LDFN(X)→ [0, 1] and given as

Θ(αγ) =
1
2

[( ξαγ + ραγ

2

)
+ (ηαγ + βαγ)

]
Definition 5 ([10]). Let αγ

1 and αγ
2 be two LDFNs; then, by using the score function and accuracy

function, we have:
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(i) If Ῠ(αγ
1) < Ῠ(αγ

2) then αγ
1 < αγ

2,
(ii) If Ῠ(αγ

2) < Ῠαγ
1) then αγ

2 < αγ
1,

(ii) If Ῠ(αγ
2) = Ῠαγ

1) then,

(a) If Θ(αγ
1) < Θ(αγ

2) then αγ
1 < αγ

2,
(b) If Θ(αγ

2) < Θ(αγ
1) then αγ

2 < αγ
1,

(c) If Θ(αγ
1) = Θ(αγ

2) then αγ
1 = αγ

2.

Definition 6 ([10]). Let αγ
1 = (〈ξ1, ρ1〉, 〈η1, β1〉) be a LDFN and X > 0. Then

• αγc
1 = (〈ρ1, ξ1〉, 〈β1, η1〉);

• Xαγ
1 =

(
〈1− (1− ξ1)

X, ρX1 〉, 〈1− (1− η1)
X, βX

1 〉
)
;

• αγX
1 =

(
〈ξX1 , 1− (1− ρ1)

X〉, 〈ηX
1 , 1− (1− β1)

X〉
)
.

Definition 7 ([10]). Let αγ
i = (〈ξi, ρi〉, 〈ηi, βi〉) be two LDFNs with i = 1, 2. Then

• αγ
1 ⊆ αγ

2 ⇔ ξ1 ≤ ξ2, ρ2 ≤ ρ1, η1 ≤ η2, β2 ≤ β1;
• αγ

1 = αγ
2 ⇔ ξ1 = ξ2, ρ1 = ρ2, η1 = η2, β1 = β2;

• αγ
1 ⊕ αγ

2 = (〈ξ1 + ξ2 − ξ1ξ2, ρ1ρ2〉, 〈η1 + η2 − η1η2, β1β2〉);
• αγ

1 ⊗ αγ
2 = (〈ξ1ξ2, ρ1 + ρ2 − ρ1ρ2〉, 〈η1η2, β1 + β2 − β1β2〉).

Definition 8 ([10]). Let αγ
i = (〈ξi, ρi〉, 〈ηi, βi〉) be the assemblage of LDFNs with i ∈ ∆. Then

• ⋃
i∈∆

αγ
i =

(
〈sup

i∈∆
ξi, inf

i∈∆
ρi〉, 〈sup

i∈∆
ηi, inf

i∈∆
βi〉
)

;

• ⋂
i∈∆

αγ
i =

(
〈inf

i∈∆
ξi, sup

i∈∆
ρi〉, 〈inf

i∈∆
ηi, sup

i∈∆
βi〉
)

.

Example 1. Consider αγ
1 = (〈0.810, 0.470〉, 〈0.520, 0.390〉) and

αγ
2 = (〈0.910, 0.360〉, 〈0.640, 0.270〉) be two LDFNs. Then, it is clear that αγ

1 ⊆ αγ
2. One can

verify that
• αγc

1 = (〈0.470, 0.810〉, 〈0.390, 0.520〉);
• αγ

1 ∪ αγ
2 = (〈0.910, 0.360〉, 〈0.640, 0.270〉) = αγ

2;
• αγ

1 ∩ αγ
2 = (〈0.810, 0.470〉, 〈0.520, 0.390〉) = αγ

1;
• αγ

1 ⊕ αγ
2 = (〈0.9829, 0.1692〉, 〈0.8272, 0.1053〉);

• αγ
1 ⊗ αγ

2 = (〈0.7371, 0.6608〉, 〈0.3328, 0.5547〉).
In addition, if X = 0.1, then we have
• Xαγ

1 = (〈0.1530, 0.9272〉, 〈0.0707, 0.9101〉);
• αγX

1 = (〈0.9791, 0.0615〉, 〈0.9366, 0.0482〉).

Definition 9. Let αγ
1 =

(〈
ξ1, ρ1

〉
,
〈
η1, β1

〉)
and αγ

2 =
(〈

ξ2, ρ2
〉
,
〈
η2, β2

〉)
be two LDFNs and

i,i1,i2 > 0 be the real numbers, then we have,

1. αγ
1 ⊕ αγ

2 = αγ
2 ⊕ αγ

1;
2. αγ

1 ⊗ αγ
2 = αγ

2 ⊗ αγ
1;

3. i(αγ
1 ⊕ αγ

2) = (iαγ
1)⊕ (iαγ

2);
4. (αγ

1 ⊗ αγ
2)

i = αγi
1 ⊗ αγi

2 ;
5. (i1 +i2)α

γ
1 = (i1αγ

1)⊕ (i2αγ
2);

6. αγi1+i2
1 = αγi1

1 ⊗ αγi2
2 .

If ξαγ
1 = ραγ

1 and ξαγ
2 = ραγ

2 then we obtain ξαγ
1⊕αγ

2 6= ραγ
1⊕αγ

2 , ξαγ
1⊗αγ

2 6= ραγ
1⊗αγ

2 ,
ξiαγ

1 6= ρiαγ
1 , ξαγi

1
6= ραγi

1
. Thus, none of the operations αγ

1 ⊕ αγ
2, αγ

1 ⊗ αγ
2,iαγ

1, αγi
1 are

located to be impartial or honest, indeed. So, at the very start, our attention has to be in the direction
of expanding a few fairly operations among IFNs.
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4. Fairly Operations on LDFNs

In this section, we develop some fairly operations between LDFNs and study their
primary properties.

Definition 10. Consider αγ
1 =

(〈
ξαγ

1 , ραγ
1

〉
,
〈
ηαγ

1 , βαγ
1

〉)
and αγ

2 =
(
〈ξαγ

2 , ραγ
2 〉, 〈ηαγ

2 , βαγ
2 〉
)

are the two LDFNs and i > 0. Then, we define.

αγ
1⊕̃αγ

2 =



〈
1
2

(
ξαγ

1
ξαγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)(
2− ξαγ

2 − ραγ
2

))
,

1
2

(
ραγ

1
ραγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)(
2− ξαγ

2 − ραγ
2

))〉
,〈(

ηαγ
1

ηαγ
2

ηαγ
1

ηαγ
2
+βαγ

1
βαγ

2

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)(
1− ηαγ

2 − βαγ
2

))
,(

βαγ
1

βαγ
2

ηαγ
1

ηαγ
2
+βαγ

1
βαγ

2

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)(
1− ηαγ

2 − βαγ
2

))〉


i ∗ αγ

1

=


〈

1
2

(
ξi

αγ
1

ξi
αγ

1
+ρi

αγ
1

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i)
, 1

2

(
ρi

αγ
1

ξi
αγ

1
+ρi

αγ
1

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i)〉
,〈(

ηi
αγ

1
ηi

αγ
1
+βi

αγ
1

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i)
,

(
βi

αγ
1

ηi
αγ

1
+βi

αγ
1

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i)〉


It can be easily verified that αγ
1⊕̃αγ

2,i ∗ αγ
1 are the LDFNs.

Theorem 1. Consider αγ
1 =

(〈
ξαγ

1 , ραγ
1

〉
,
〈
ηαγ

1 , βαγ
1

〉)
and αγ

2 =
(
〈ξαγ

2 , ραγ
2〉, 〈ηαγ

2 , βαγ
2〉
)

are the two LDFNs. If ξαγ
1 = ραγ

1 , ξαγ
2 = ραγ

2 , ηαγ
1 = βαγ

1 and ηαγ
2 = βαγ

2 then we have

(i) ξαγ
1⊕̃αγ

2
= ραγ

1⊕̃αγ
2
, and ηαγ

1⊕̃αγ
2
= βαγ

1⊕̃αγ
2
,

(ii) ξi∗αγ
1 = ρi∗αγ

1 , and ηi∗αγ
1 = βi∗αγ

1

Proof. (i) As given ξαγ
1 = ραγ

1 and ξαγ
2 = ραγ

2

ξαγ
1⊕̃αγ2

ραγ
1⊕̃αγ2

=

1
2

(
ξαγ

1
ξαγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)(
2− ξαγ2 − ραγ2

))

1
2

(
ραγ

1
ραγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)(
2− ξαγ2 − ραγ2

))
= 1

Consequently, ξαγ
1⊕̃αγ

2
= ραγ

1⊕̃αγ
2
. If ξαγ

1 = ραγ
1 and ξαγ

2 = ραγ
2 .

As given, ηαγ
1 = βαγ

1 and ηαγ
2 = βαγ

2
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ηαγ
1⊕̃αγ2

βαγ
1⊕̃αγ2

=

(
ηαγ

1
ηαγ

2
ηαγ

1
ηαγ

2
+βαγ

1
βαγ

2

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)(
1− ηαγ2 − βαγ2

))
(

βαγ
1

βαγ
2

ηαγ
1

ηαγ
2
+βαγ

1
βαγ

2

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)(
1− ηαγ2 − βαγ2

))
= 1

Consequently, ηαγ
1⊕̃αγ

2
= βαγ

1⊕̃αγ
2
. If ηαγ

1 = βαγ
1 and ηαγ

2 = βαγ
2 .

(ii) As given ξαγ
1 = ραγ

1 and ξαγ
2 = ραγ

2

ξi∗αγ
1

ρi∗αγ
1

=

1
2

(
ξi

αγ
1

ξi
αγ

1
+ρi

αγ
1

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i)

1
2

(
ρi

αγ
1

ξi
αγ

1
+ρi

αγ
1

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i)
= 1

Consequently, ξi∗αγ
1 = ρi∗αγ

1 . If ξαγ
1 = ραγ

1 and ξαγ
2 = ραγ

2 .
As given, ηαγ

1 = βαγ
1 and ηαγ

2 = βαγ
2

ηi∗αγ
1

βi∗αγ
1

=

(
ηi

αγ
1

ηi
αγ

1
+βi

αγ
1

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i)
(

βi
αγ

1
ηi

αγ
1
+βi

αγ
1

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i)
= 1

Consequently, ηi∗αγ
1 = βi∗αγ

1 . If ηαγ
1 = βαγ

1 and ηαγ
2 = βαγ

2 .

The above theorem shows that the operations αγ
1⊕̃αγ

2,i ∗ αγ
1 show the fairly or

neutral nature to the DMs, when MSG, NMSG and RPs are equal initially. This is why we
call the operations

⊗̃
, * fairly operations.

Theorem 2. Consider αγ
1 =

(〈
ξαγ

1 , ραγ
1

〉
,
〈
ηαγ

1 , βαγ
1

〉)
and αγ

2 =
(
〈ξαγ

2 , ραγ
2〉, 〈ηαγ

2 , βαγ
2〉
)

are the LDFNs and i,i1 and i2 are any three real numbers, then we have

(i) αγ
1⊕̃αγ

2 = αγ
2⊕̃αγ

1

(ii) i ∗ (αγ
1⊕̃αγ

2) = (i ∗ αγ
1)⊕̃(i ∗ αγ

2)

(iii) (i1 +i2) ∗ αγ
1 = (i1 ∗ αγ

1)⊕̃(i2 ∗ αγ
1)

Proof. (i) This one is trivial.
(ii) i ∗ (αγ

1⊕̃αγ
2)
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=



〈
1
2

(
ξαγ

1
ξαγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)i

(
ξαγ

1
ξαγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)i
+

(
ραγ

1
ραγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)i ×
(

1 + (1 + (1 + (2− ξαγ
1 − ραγ

1)(2− ξαγ
2 − ραγ

2)))
i
)

,

1
2

(
ραγ

1
ραγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)i

(
ξαγ

1
ξαγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)i
+

(
ραγ

1
ραγ

2
ξαγ

1
ξαγ

2
+ραγ

1
ραγ

2

)i ×
(

1 + (1 + (1 + (2− ξαγ
1 − ραγ

1)(2− ξαγ
2 − ραγ

2)))
i
)〉

,

〈 (
ηαγ

1
ηαγ

2
ηαγ

1
ηαγ

2
+βαγ

1
βαγ

2

)i

(
ηαγ

1
ηαγ

2
ηαγ

1
ηαγ

2
+βαγ

1
βαγ

2

)i
+

(
βαγ

1
βαγ

2
ηαγ

1
ηαγ

2
+βαγ

1
βαγ

2

)i ×
(

1− (1− (1− (1− ηαγ
1 − βαγ

1)(1− ηαγ
2 − βαγ

2)))
i
)

,

(
βαγ

1
βαγ

2
ηαγ

1
ηαγ

2
+βαγ

1
βαγ

2

)i

(
ηαγ

1
ηαγ

2
ηαγ

1
ηαγ

2
+βαγ

1
βαγ

2

)i
+

(
βαγ

1
βαγ

2
ηαγ

1
ηαγ

2
+βαγ

1
βαγ

2

)i ×
(

1− (1− (1− (1− ηαγ
1 − βαγ

1)(1− ηαγ
2 − βαγ

2)))
i
)〉



=



〈
1
2

ξi
αγ

1
ξi

αγ
2

ξi
αγ

1
ξi

αγ
2
+ρi

αγ
1

ρi
αγ

2

(
1 + (2− ξαγ

1 − ραγ
1)

i(2− ξαγ
2 − ραγ

2)
i
)

,

1
2

ρi
αγ

1
ρi

αγ
2

ξi
αγ

1
ξi

αγ
2
+ρi

αγ
1

ρi
αγ

2

(
1 + (2− ξαγ

1 − ραγ
1)

i(2− ξαγ
2 − ραγ

2)
i
)〉

,〈
ηi

αγ
1

ηi
αγ

2
ηi

αγ
1

ηi
αγ

2
+βi

αγ
1

βi
αγ

2

(
1− (1− ηαγ

1 − βαγ
1)

i(1− ηαγ
2 − βαγ

2)
i
)

,

βi
αγ

1
βi

αγ
2

ηi
αγ

1
ηi

αγ
2
+βi

αγ
1

βi
αγ

2

(
1− (1− ηαγ

1 − βαγ
1)

i(1− ηαγ
2 − βαγ

2)
i
)〉



=



〈
1
2

ξi
αγ

1
ξi

αγ
1
+ρi

αγ
1

×
ξi

αγ
2

ξi
αγ

2
+ρi

αγ
2

ξi
αγ

1
ξi

αγ
1
+ρi

αγ
1

×
ξi

αγ
2

ξi
αγ

2
+ρi

αγ
2
+
+

ρi
αγ

1
ξi

αγ
1
+ρi

αγ
1
+
×

ρi
αγ

2
ξi

αγ
2
+ρi

αγ
2
+

×
(

1 +
(

1 +
(

1 + (2− ξαγ
1 − ραγ

1)
i
))
×

(
1 +

(
1 + (2− ξαγ

2 − ραγ
2)

i
)))

,

1
2

ρi
αγ

1
ξi

αγ
1
+ρi

αγ
1

×
ρi

αγ
2

ξi
αγ

2
+ρi

αγ
2

ξi
αγ

1
ξi

αγ
1
+ρi

αγ
1

×
ξi

αγ
2

ξi
αγ

2
ρi

αγ
2

+
ρi

αγ
1

ξi
αγ

1
+ρi

αγ
1

×
ρi

αγ
2

ξi
αγ

2
+ρi

αγ
2

×
(

1 +
(

1 +
(

1 + (2− ξαγ
1 − ραγ

1)
i
))
×

(
1 +

(
1 + (2− ξαγ

2 − ραγ
2)

i
)))〉

,

〈 ηi
αγ

1
ηi

αγ
1
+βi

αγ
1

×
ηi

αγ
2

ηi
αγ

2
+βi

αγ
2

ηi
αγ

1
ηi

αγ
1
+βi

αγ
1

×
ηi

αγ
2

ηi
αγ

2
+βi

αγ
2
+
+

βi
αγ

1
ηi

αγ
1
+βi

αγ
1
+
×

βi
αγ

2
ηi

αγ
2
+βi

αγ
2
+

×
(

1−
(

1−
(

1− (1− ηαγ
1 − βαγ

1)
i
))
×

(
1−

(
1− (1− ηαγ

2 − βαγ
2)

i
)))

,

βi
αγ

1
ηi

αγ
1
+βi

αγ
1

×
βi

αγ
2

ηi
αγ

2
+βi

αγ
2

ηi
αγ

1
ηi

αγ
1
+βi

αγ
1

×
ηi

αγ
2

ηi
αγ

2
βi

αγ
2

+
βi

αγ
1

ηi
αγ

1
+βi

αγ
1

×
βi

αγ
2

ηi
αγ

2
+βi

αγ
2

×
(

1−
(

1−
(

1− (1− ηαγ
1 − βαγ

1)
i
))
×

(
1−

(
1− (1− ηαγ

2 − βαγ
2)

i
)))〉
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=



〈
1
2

ξi
αγ

1
ξi

αγ
2

ξi
αγ

1
ξi

αγ
2
+ρi

αγ
1

ρi
αγ

2

(
1 + (2− ξαγ

1 − ραγ
1)

i(2− ξαγ
2 − ραγ

2)
i
)

,

1
2

ρi
αγ

1
ρi

αγ
2

ξi
αγ

1
ξi

αγ
2
+ρi

αγ
1

ρi
αγ

2

(
1 + (2− ξαγ

1 − ραγ
1)

i(2− ξαγ
2 − ραγ

2)
i
)〉

,〈
ηi

αγ
1

ηi
αγ

2
ηi

αγ
1

ηi
αγ

2
+βi

αγ
1

βi
αγ

2

(
1− (1− ηαγ

1 − βαγ
1)

i(1− ηαγ
2 − βαγ

2)
i
)

,

βi
αγ

1
βi

αγ
2

ηi
αγ

1
ηi

αγ
2
+βi

αγ
1

βi
αγ

2

(
1− (1− ηαγ

1 − βαγ
1)

i(1− ηαγ
2 − βαγ

2)
i
)〉


Hence, i ∗ (αγ

1⊕̃αγ
2) = (i ∗ αγ

1)⊕̃(i ∗ αγ
2).

(iii) (i1 ∗ αγ
1)⊕̃(i2 ∗ αγ

1)

=



〈 1
2

(
ξ
i1
αγ

1

ξ
i1
αγ

1
+ρi

αγ
1
+

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i1)
, 1

2

(
ρ
i1
αγ

1

ξ
i1
αγ

1
+ρi

αγ
1
+

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i1)〉
,

〈(
η
i1
αγ

1

η
i1
αγ

1
+βi

αγ
1
+

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i1)
,

(
β
i1
αγ

1

η
i1
αγ

1
+βi

αγ
1
+

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i1)〉
⊕̃

〈 1
2

(
ξ
i2
αγ

1

ξ
i2
αγ

1
+ρi

αγ
1
+

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i2)
, 1

2

(
ρ
i2
αγ

1

ξ
i2
αγ

1
+ρi

αγ
1
+

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i2)〉
,

〈(
η
i2
αγ

1

η
i2
αγ

1
+βi

αγ
1
+

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i2)
,

(
β
i2
αγ

1

η
i2
αγ

1
+βi

αγ
1
+

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i2)〉
)



=


〈

1
2

(
ξ
i1+i2
αγ

1

ξ
i1+i2
αγ

1
+ρi

αγ
1
+

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i1+i2)
, 1

2

(
ρ
i1+i2
αγ

1

ξ
i1+i2
αγ

1
+ρi

αγ
1
+

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i1+i2)〉
,〈(

η
i1+i2
αγ

1

η
i1+i2
αγ

1
+βi

αγ
1
+

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i1+i2)
,

(
β
i1+i2
αγ

1

η
i1+i2
αγ

1
+βi

αγ
1
+

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i1+i2)〉


and
(i1 +i2) ∗ αγ

1

=


〈

1
2

(
ξ
i1+i2
αγ

1

ξ
i1+i2
αγ

1
+ρi

αγ
1
+

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i1+i2)
, 1

2

(
ρ
i1+i2
αγ

1

ξ
i1+i2
αγ

1
+ρi

αγ
1
+

)
×
(

1 +

(
2− ξαγ

1 − ραγ
1

)i1+i2)〉
,〈(

η
i1+i2
αγ

1

η
i1+i2
αγ

1
+βi

αγ
1
+

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i1+i2)
,

(
β
i1+i2
αγ

1

η
i1+i2
αγ

1
+βi

αγ
1
+

)
×
(

1−
(

1− ηαγ
1 − βαγ

1

)i1+i2)〉


Hence, (i1 +i2) ∗ αγ
1 = (i1 ∗ αγ

1)⊕̃(i2 ∗ αγ
1)

5. Fairly Aggregation Operators for LDFNs

This section discusses fairly AOs for LDFNs and their characteristics.

5.1. LDFFWA Operator

Definition 11. Let αγ
h = (〈ξh, ρh〉, 〈ηh, βh〉) be the accumulation of LDFNs, and LDFFWA:

F n → F , be a n dimension mapping. If

LDFFWA(αγ
1, αγ

2, . . . αγ
e) = (ϑγ

1 ∗ αγ
1⊕̃ϑγ

2 ∗ αγ
2⊕̃ . . . , ⊕̃ϑγ

e ∗ αγ
e) (1)

then the mapping LDFFWA is called “linear Diophantine fuzzy fairly weighted averaging (LDFFWA)
operator”, here, ϑγ

i is the weight vector (WV) of αγ
i with ϑγ

i > 0 and ∑e
i=1 ϑγ

i = 1.
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Moreover, as demonstrated in the theorem similarly below, we can consider LDFFWA
using fairly operational laws.

Theorem 3. Let αγ
h = (〈ξh, ρh〉, 〈ηh, βh〉) be the accumulation of LDFNs; we can also find

LDFFWA by

LDFFWA(αγ
1, αγ

2, . . . , αγ
e)

=



〈
1
2

∏e
i=1(ξi)

ϑγ
i

∏e
i=1(ξi)

ϑγ
i+∏e

i=1(ρi)
ϑγ

i
×
(

1 + ∏e
i=1(2− ξi − ρi)

ϑγ
i
)

,

1
2

∏e
i=1(ρi)

ϑγ
i

∏e
i=1(ξi)

ϑγ
i+∏e

i=1(ρi)
ϑγ

i
×
(

1 + ∏e
i=1(2− ξi − ρi)

ϑγ
i
)〉

,

〈
∏e

i=1(ηi)
ϑγ

i

∏e
i=1(ηi)

ϑγ
i+∏e

i=1(βi)
ϑγ

i
×
(

1−∏e
i=1(1− ηi − βi)

ϑγ
i
)

,

∏e
i=1(βi)

ϑγ
i

∏e
i=1(ηi)

ϑγ
i+∏e

i=1(βi)
ϑγ

i
×
(

1−∏e
i=1(1− ηi − βi)

ϑγ
i
)〉


where ϑγ

i is the WV of αγ
i with ϑγ

i > 0 and ∑e
i=1 ϑγ

i = 1.

Proof. This proof will begin with mathematical induction.
For e = 1, we have αγ

1 = 〈ξ1, ρ1〉 and ϑγ = 1.

LDFFWA(αγ
1) = ϑγ

1 ∗ αγ
1

=


〈

1
2

(ξ1)
ϑγ

1

(ξ1)
ϑγ

1+(ρ1)
ϑγ

1
×
(

1 + (2− ξ1 − ρ1)
ϑγ

1
)

, 1
2

(ρ1)
ϑγ

1

(ξ1)
ϑγ

1+(ρ1)
ϑγ

1
×
(

1 + (2− ξ1 − ρ1)
ϑγ

1
)〉

,〈
(η1)

ϑγ
1

(η1)
ϑγ

1+(β1)
ϑγ

1
×
(

1− (1− η1 − β1)
ϑγ

1
)

, (β1)
ϑγ

1

(η1)
ϑγ

1+(β1)
ϑγ

1
×
(

1− (1− η1 − β1)
ϑγ

1
)〉


Even as theorem holds true for e = 1, we now anticipate it to hold proper for e = g,

i.e.,

LDFFWA(αγ
1, αγ

2, . . . , αγ
g) =



〈
1
2

∏
g
i=1(ξi)

ϑγ
i

∏
g
i=1(ξi)

ϑγ
i+∏

g
i=1(ρi)

ϑγ
i
×
(

1 + ∏
g
i=1(2− ξi − ρi)

ϑγ
i
)

,

1
2

∏
g
i=1(ρi)

ϑγ
i

∏
g
i=1(ξi)

ϑγ
i+∏

g
i=1(ρi)

ϑγ
i
×
(

1 + ∏
g
i=1(2− ξi − ρi)

ϑγ
i
)〉

,

〈
∏

g
i=1(ηi)

ϑγ
i

∏
g
i=1(ηi)

ϑγ
i+∏

g
i=1(βi)

ϑγ
i
×
(

1−∏
g
i=1(1− ηi − βi)

ϑγ
i
)

,

∏
g
i=1(βi)

ϑγ
i

∏
g
i=1(ηi)

ϑγ
i+∏

g
i=1(βi)

ϑγ
i
×
(

1−∏
g
i=1(1− ηi − βi)

ϑγ
i
)〉


We will prove for e = g + 1.
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LDFFWA(αγ
1, αγ

2, . . . , αγ
g+1) = LDFFWA(αγ

1, αγ
2, . . . , αγ

g)⊕̃(ϑγ
g+1 ∗ αγ

g+1)

=



〈
1
2

∏
g
i=1(ξi)

ϑγ
i

∏
g
i=1(ξi)

ϑγ
i+∏

g
i=1(ρi)

ϑγ
i
×
(

1 + ∏
g
i=1(2− ξi − ρi)

ϑγ
i
)

,

1
2

∏
g
i=1(ρi)

ϑγ
i

∏
g
i=1(ξi)

ϑγ
i+∏

g
i=1(ρi)

ϑγ
i
×
(

1 + ∏
g
i=1(2− ξi − ρi)

ϑγ
i
)〉

,

〈
∏

g
i=1(ηi)

ϑγ
i

∏
g
i=1(ηi)

ϑγ
i+∏

g
i=1(βi)

ϑγ
i
×
(

1−∏
g
i=1(1− ηi − βi)

ϑγ
i
)

,

∏
g
i=1(βi)

ϑγ
i

∏
g
i=1(ηi)

ϑγ
i+∏

g
i=1(βi)

ϑγ
i
×
(

1−∏
g
i=1(1− ηi − βi)

ϑγ
i
)〉


⊕̃



〈
1
2

(
ξ

ϑγ
g+1

αγ
g+1

ξ
ϑγ

g+1
αγ

g+1
+ρ

ϑγ
g+1

αγ
g+1

)
×
(

1 +

(
2− ξαγ

g+1 − ραγ
g+1

)ϑγ
g+1)

,

1
2

(
ρ

ϑγ
g+1

αγ
g+1

ξ
ϑγ

g+1
αγ

g+1
+ρ

ϑγ
g+1

αγ
g+1

)
×
(

1 +

(
2− ξαγ

g+1 − ραγ
g+1

)ϑγ
g+1)〉

,

〈(
η

ϑγ
g+1

αγ
g+1

η
ϑγ

g+1
αγ

g+1
+β

ϑγ
g+1

αγ
g+1

)
×
(

1−
(

1− ηαγ
g+1 − βαγ

g+1

)ϑγ
g+1)

,

(
β

ϑγ
g+1

αγ
g+1

η
ϑγ

g+1
αγ

g+1
+β

ϑγ
g+1

αγ
g+1

)
×
(

1−
(

1− ηαγ
g+1 − βαγ

g+1

)ϑγ
g+1)〉



=



〈
1
2

∏
g
i=1(ξi)

ϑγ
i×(ξg+1)

ϑγ
g+1

∏
g
i=1(ξi)

ϑγ
i×(ξg+1)

ϑγ
g+1+∏

g
i=1(ρi)

ϑγ
i×(ρg+1)

ϑγ
g+1
×
(

1 + ∏
g
i=1(2− ξi − ρi)

ϑγ
i ×
(
2− ξg+1 − ρg+1

)ϑγ
g+1
)

,

1
2

∏
g
i=1(ρi)

ϑγ
i×(ρg+1)

ϑγ
g+1

∏
g
i=1(ξi)

ϑγ
i×(ξg+1)

ϑγ
g+1+∏

g
i=1(ρi)

ϑγ
i×(ρg+1)

ϑγ
g+1
×
(

1 + ∏
g
i=1(2− ξi − ρi)

ϑγ
i ×
(
2− ξg+1 − ρg+1

)ϑγ
g+1
)〉

,

〈
∏

g
i=1(ηi)

ϑγ
i×(ηg+1)

ϑγ
g+1

∏
g
i=1(ηi)

ϑγ
i×(ηg+1)

ϑγ
g+1+∏

g
i=1(βi)

ϑγ
i×(βg+1)

ϑγ
g+1
×
(

1−∏
g
i=1(1− ηi − βi)

ϑγ
i ×
(
1− ηg+1 − βg+1

)ϑγ
g+1
)

,

∏
g
i=1(βi)

ϑγ
i×(βg+1)

ϑγ
g+1

∏
g
i=1(ηi)

ϑγ
i×(ηg+1)

ϑγ
g+1+∏

g
i=1(βi)

ϑγ
i×(βg+1)

ϑγ
g+1
×
(

1−∏
g
i=1(1− ηi − βi)

ϑγ
i ×
(
1− ηg+1 − βg+1

)ϑγ
g+1
)〉



=



〈
1
2

∏
g+1
i=1 (ξi)

ϑγ
i

∏
g+1
i=1 (ξi)

ϑγ
i+∏

g+1
i=1 (ρi)

ϑγ
i
×
(

1 + ∏
g+1
i=1 (2− ξi − ρi)

ϑγ
i
)

,

1
2

∏
g+1
i=1 (ρi)

ϑγ
i

∏
g+1
i=1 (ξi)

ϑγ
i+∏

g+1
i=1 (ρi)

ϑγ
i
×
(

1 + ∏
g+1
i=1 (2− ξi − ρi)

ϑγ
i
)〉

,

〈
∏

g+1
i=1 (ηi)

ϑγ
i

∏
g+1
i=1 (ηi)

ϑγ
i+∏

g+1
i=1 (βi)

ϑγ
i
×
(

1−∏
g+1
i=1 (1− ηi − βi)

ϑγ
i
)

,

∏
g+1
i=1 (βi)

ϑγ
i

∏
g+1
i=1 (ηi)

ϑγ
i+∏

g+1
i=1 (βi)

ϑγ
i
×
(

1−∏
g+1
i=1 (1− ηi − βi)

ϑγ
i
)〉
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Consequently, the statement holds genuine for e = g + 1 as well. Therefore, the belief
is authentic for every e using the principle of induction.

Example 2. Assume αγ
1 = (〈0.86, 0.76〉, 〈0.45, 0.25〉), αγ

2 = (〈0.67, 0.98〉, 〈0.53, 0.29〉) and
αγ

3 = (〈0.58, 0.68〉, 〈0.65, 0.15〉) are three LDFNs with WV ϑγ = (0.30, 0.45, 0.25), then

1
2

∏3
i=1(ξi)

ϑγ
i

∏3
i=1(ξi)

ϑγ
i + ∏3

i=1(ρi)
ϑγ

i
×
(

1 +
3

∏
i=1

(2− ξi − ρi)
ϑγ

i

)
= 0.327101

1
2

∏3
i=1(ρi)

ϑγ
i

∏3
i=1(ξi)

ϑγ
i + ∏3

i=1(ρi)
ϑγ

i
×
(

1 +
3

∏
i=1

(2− ξi − ρi)
ϑγ

i

)
= 0.389193

∏3
i=1(ηi)

ϑγ
i

∏3
i=1(ηi)

ϑγ
i + ∏3

i=1(βi)
ϑγ

i
×
(

1−
3

∏
i=1

(1− ηi − βi)
ϑγ

i

)
= 0.543735

∏3
i=1(βi)

ϑγ
i

∏3
i=1(ηi)

ϑγ
i + ∏3

i=1(βi)
ϑγ

i
×
(

1−
3

∏
i=1

(1− ηi − βi)
ϑγ

i

)
= 0.240855

LDFFWA(αγ
1, αγ

2, αγ
3)

=



〈
1
2

∏3
i=1(ξi)

ϑγ
i

∏3
i=1(ξi)

ϑγ
i+∏3

i=1(ρi)
ϑγ

i
×
(

1 + ∏3
i=1(2− ξi − ρi)

ϑγ
i
)

,

1
2

∏3
i=1(ρi)

ϑγ
i

∏3
i=1(ξi)

ϑγ
i+∏3

i=1(ρi)
ϑγ

i
×
(

1 + ∏3
i=1(2− ξi − ρi)

ϑγ
i
)〉

,

〈
∏3

i=1(ηi)
ϑγ

i

∏3
i=1(ηi)

ϑγ
i+∏3

i=1(βi)
ϑγ

i
×
(

1−∏3
i=1(1− ηi − βi)

ϑγ
i
)

,

∏3
i=1(βi)

ϑγ
i

∏3
i=1(ηi)

ϑγ
i+∏3

i=1(βi)
ϑγ

i
×
(

1−∏3
i=1(1− ηi − βi)

ϑγ
i
)〉


= (〈0.327101, 0.389193〉, 〈0.543735, 0.240855〉)

The proposed AO meets a number of special prerequisites, which are described in the
following theorems.

Theorem 4. Let αγ
i = (〈ξi, ρi〉, 〈ηi, βi〉〉 be the accumulation of LDFNs and αγ� = (〈ξ�, ρ�〉,

〈η�, β�〉) be the LDFN such that, αγ
i = αγ�∀i. Then

LDFFWA(αγ
1, αγ

2, . . . , αγ
e) = αγ

� (2)

Proof. Given that αγ
i = αγ�∀i, by this, ξi = ξ�, ρi = ρ�, ηi = η� and βi = β�∀i
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LDFFWA(αγ
1, αγ

2, . . . , αγ
e)

=



〈
1
2

∏e
i=1(ξi)

ϑγ
i

∏e
i=1(ξi)

ϑγ
i+∏e

i=1(ρi)
ϑγ

i
×
(

1 + ∏e
i=1(2− ξi − ρi)

ϑγ
i
)

,

1
2

∏e
i=1(ρi)

ϑγ
i

∏e
i=1(ξi)

ϑγ
i+∏e

i=1(ρi)
ϑγ

i
×
(

1 + ∏e
i=1(2− ξi − ρi)

ϑγ
i
)〉

,

〈
∏e

i=1(ηi)
ϑγ

i

∏e
i=1(ηi)

ϑγ
i+∏e

i=1(βi)
ϑγ

i
×
(

1−∏e
i=1(1− ηi − βi)

ϑγ
i
)

,

∏e
i=1(βi)

ϑγ
i

∏e
i=1(ηi)

ϑγ
i+∏e

i=1(βi)
ϑγ

i
×
(

1−∏e
i=1(1− ηi − βi)

ϑγ
i
)〉



=



〈
1
2

∏e
i=1(ξ�)

ϑγ
i

∏e
i=1(ξ�)

ϑγ
i+∏e

i=1(ρ�)
ϑγ

i
×
(

1 + ∏e
i=1(2− ξ� − ρ�)

ϑγ
i
)

,

1
2

∏e
i=1(ρ�)

ϑγ
i

∏e
i=1(ξ�)

ϑγ
i+∏e

i=1(ρ�)
ϑγ

i
×
(

1 + ∏e
i=1(2− ξ� − ρ�)

ϑγ
i
)〉

,

〈
∏e

i=1(η�)
ϑγ

i

∏e
i=1(η�)

ϑγ
i+∏e

i=1(β�)
ϑγ

i
×
(

1−∏e
i=1(1− η� − β�)

ϑγ
i
)

,

∏e
i=1(β�)

ϑγ
i

∏e
i=1(η�)

ϑγ
i+∏e

i=1(β�)
ϑγ

i
×
(

1−∏e
i=1(1− η� − β�)

ϑγ
i
)〉



=



〈
1
2

(ξ�)
∑e

i=1 ϑγ
i

(ξ�)
∑e

i=1 ϑγ
i+(ρ�)

∑e
i=1 ϑγ

i
×
(

1 + (2− ξ� − ρ�)
∑e

i=1 ϑγ
i
)

,

1
2

(ρ�)
∑e

i=1 ϑγ
i

(ξ�)
∑e

i=1 ϑγ
i+(ρ�)

∑e
i=1 ϑγ

i
×
(

1 + (2− ξ� − ρ�)
∑e

i=1 ϑγ
i
)〉

,

〈
(η�)

∑e
i=1 ϑγ

i

(η�)
∑e

i=1 ϑγ
i+(β�)

∑e
i=1 ϑγ

i
×
(

1− (1− η� − β�)
∑e

i=1 ϑγ
i
)

,

(β�)
∑e

i=1 ϑγ
i

(η�)
∑e

i=1 ϑγ
i+(β�)

∑e
i=1 ϑγ

i
×
(

1− (1− η� − β�)
∑e

i=1 ϑγ
i
)〉


=(〈ξ�, ρ�〉, 〈η�, β�〉) = αγ

�

Theorem 5. Let αγ
i = (〈ξi, ρi〉, 〈ηi, βi〉) be the accumulation of LDFNs. Then, for

LDFFWA(αγ
1, αγ

2, . . . , αγ
e) = (〈ξx, ρx〉, 〈ηx, βx〉), we have

mini{ξi + ρi}+ mini{ηi + βi} ≤ ξx + ρx + ηx + βx ≤ maxi{ξi + ρi}+ maxi{ηi + βi}

Proof. Consider the following to start:
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min
i
{ηi + βi} = 1−

(
1−min

i
{ηi + βi}

)
= 1−

(
1−min

i
{ηi + βi}

)∑e
i=1 ϑγ

i

= 1−
e

∏
i=1

(
1−min

i
{ηi + βi}

)ϑγ
i

≤ 1−
e

∏
i=1

(1− {ηi + βi})ϑγ
i

≤ 1−
e

∏
i=1

(
1−max

i
{ηi + βi}

)ϑγ
i

= 1−
(

1−max
i
{ηi + βi}

)∑e
i=1 ϑγ

i

= max
i
{ηi + βi}

By Theorem 2, we obtain

ηx =
∏e

i=1(ηi)
ϑγ

i

∏e
i=1(ηi)

ϑγ
i + ∏e

i=1(βi)
ϑγ

i
×
(

1−
e

∏
i=1

(1− ηi − βi)
ϑγ

i

)

βx =
∏e

i=1(βi)
ϑγ

i

∏e
i=1(ηi)

ϑγ
i + ∏e

i=1(βi)
ϑγ

i
×
(

1−
e

∏
i=1

(1− ηi − βi)
ϑγ

i

)

From this, we obtain

ηx + βx =

(
1−

e

∏
i=1

(1− ηi − βi)
ϑγ

i

)

Consequently,
min

i
{ηi + βi} ≤ ηx + βx ≤ max

i
{ηi + βi}. (3)

On the same way we also obtain

min
i
{ξi + ρi} ≤ ξx + ρx ≤ max

i
{ξi + ρi} (4)

By Equations (3) and (4), we obtain the desire result as,

mini{ξi + ρi}+ mini{ηi + βi} ≤ ξx + ρx + ηx + βx ≤ maxi{ξi + ρi}+ maxi{ηi + βi}.

Theorem 6. Assume that αγ
i = (〈ξi, ρi〉, 〈ηi, βi〉) and αγ

i∗ = (〈ξi∗ , ρi∗〉, 〈ηi∗ , βi∗〉) are the
families of LDFNs, and also consider

LDFFWA(αγ
1, αγ

2, . . . αγ
e) = αγ = (〈ξ, ρ〉, 〈η, β〉)

and
LDFFWA(αγ

1∗ , αγ
2∗ , . . . αγ

e∗) = αγ∗ = (〈ξ∗ , ρ∗〉, 〈η∗ , β∗〉)

Then,
ξ + ρ ≤ ξ∗ + ρ∗ , if ξi + ρi ≤ ξi∗ + ρi∗
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and
η + β ≤ η∗ + β∗ , if ηi + βi ≤ ηi∗ + βi∗

Proof. If Theorem 2 is applied to the both assemblage of LDFNs, αγ
i = (〈ξi, ρi〉, 〈ηi, βi〉)

and αγ
i∗ = (〈ξi∗ , ρi∗〉, 〈ηi∗ , βi∗〉), we obtain

ξ =
1
2

∏e
i=1(ξi)

ϑγ
i

∏e
i=1(ξi)

ϑγ
i + ∏e

i=1(ρi)
ϑγ

i
×
(

1 +
e

∏
i=1

(2− ξi − ρi)
ϑγ

i

)

ρ =
1
2

∏e
i=1(ρi)

ϑγ
i

∏e
i=1(ξi)

ϑγ
i + ∏e

i=1(ρi)
ϑγ

i
×
(

1 +
e

∏
i=1

(2− ξi − ρi)
ϑγ

i

)
and

ξ∗ =
1
2

∏e
i=1(ξi∗)

ϑγ
i

∏e
i=1(ξi∗)

ϑγ
i + ∏e

i=1(ρi∗)
ϑγ

i
×
(

1 +
e

∏
i=1

(2− ξi∗ − ρi∗)
ϑγ

i

)

ρ∗ =
1
2

∏e
i=1(ρi∗)

ϑγ
i

∏e
i=1(ξi∗)

ϑγ
i + ∏e

i=1(ρi∗)
ϑγ

i
×
(

1 +
e

∏
i=1

(2− ξi∗ − ρi∗)
ϑγ

i

)

By this, if ξi + ρi ≤ ξi∗ + ρi∗ then we have,

ξ + ρ = 1−
e

∏
i=1

(1− {ξi + ρi})ϑγ
i ≤ 1−

e

∏
i=1

(1− {ξi∗ + ρi∗})ϑγ
i ≤ ξ∗ + ρ∗

Again,

η =
∏e

i=1(ηi)
ϑγ

i

∏e
i=1(ηi)

ϑγ
i + ∏e

i=1(βi)
ϑγ

i
×
(

1−
e

∏
i=1

(1− ηi − βi)
ϑγ

i

)

β =
∏e

i=1(βi)
ϑγ

i

∏e
i=1(ηi)

ϑγ
i + ∏e

i=1(βi)
ϑγ

i
×
(

1−
e

∏
i=1

(1− ηi − βi)
ϑγ

i

)
and

η∗ =
∏e

i=1(ηi∗)
ϑγ

i

∏e
i=1(ηi∗)

ϑγ
i + ∏e

i=1(βi∗)
ϑγ

i
×
(

1−
e

∏
i=1

(1− ηi∗ − βi∗)
ϑγ

i

)

β∗ =
∏e

i=1(βi∗)
ϑγ

i

∏e
i=1(ηi∗)

ϑγ
i + ∏e

i=1(βi∗)
ϑγ

i
×
(

1−
e

∏
i=1

(1− ηi∗ − βi∗)
ϑγ

i

)

By this, if ηi + βi ≤ ηi∗ + βi∗ then we have,

η + β = 1−
e

∏
i=1

(1− {ηi + βi})ϑγ
i ≤ 1−

e

∏
i=1

(1− {ηi∗ + βi∗})ϑγ
i ≤ η∗ + β∗

5.2. LDFFOWA Operator

Definition 12. Let αγ
h = (〈ξh, ρh〉, 〈ηh, βh〉) be the accumulation of LDFNs, and LDFFOWA:

F n → F , be a n dimension mapping. If

LDFFOWA(αγ
1, αγ

2, . . . αγ
e) =

(
ϑγ

1 ∗ αγ
τ(1)⊕̃ϑγ

2 ∗ αγ
τ(2)⊕̃ . . . , ⊕̃ϑγ

e ∗ αγ
τ(e)

)
(5)
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then the mapping LDFFOWA is called “linear Diophantine fuzzy fairly ordered weighted averaging
(LDFFOWA) operator”, here, ϑγ

i is the WV of αγ
i with ϑγ

i > 0 and ∑e
i=1 ϑγ

i = 1.
ξ : 1, 2, 3, . . . . . . , n→ 1, 2, 3, . . . . . . , n is a permutation map s.t. αγ

τ(i−1) ≥ αγ
τ(i) .

Additionally, as demonstrated in the theorem further below, we can consider LDFFOWA
using fairly operational laws.

Theorem 7. Let αγ
h = (〈ξh, ρh〉, 〈ηh, βh〉) be the accumulation of LDFNs; we can also find

LDFFOWA by
LDFFOWA(αγ

1, αγ
2, . . . , αγ

e)

=



〈
1
2

∏e
i=1

(
ξτ(i)

)ϑγ
i

∏e
i=1

(
ξτ(i)

)ϑγτ(i)+∏e
i=1

(
ρτ(i)

)ϑγ
i
×
(

1 + ∏e
i=1

(
2− ξτ(i) − ρτ(i)

)ϑγ
i
)

,

1
2

∏e
i=1

(
ρτ(i)

)ϑγ
i

∏e
i=1

(
ξτ(i)

)ϑγ
i
+∏e

i=1

(
ρτ(i)

)ϑγ
i
×
(

1 + ∏e
i=1

(
2− ξτ(i) − ρτ(i)

)ϑγ
i
)〉

,

〈
∏e

i=1

(
ητ(i)

)ϑγ
i

∏e
i=1

(
ητ(i)

)ϑγτ(i)+∏e
i=1

(
βτ(i)

)ϑγ
i
×
(

1−∏e
i=1

(
1− ητ(i) − βτ(i)

)ϑγ
i
)

,

∏e
i=1

(
βτ(i)

)ϑγ
i

∏e
i=1

(
ητ(i)

)ϑγ
i
+∏e

i=1

(
βτ(i)

)ϑγ
i
×
(

1−∏e
i=1

(
1− ητ(i) − βτ(i)

)ϑγ
i
)〉


where ϑγ

i is the WV of αγ
i with ϑγ

i > 0 and ∑e
i=1 ϑγ

i = 1.

Proof. The proof is identical with Theorem 2.

Theorem 8. Let αγ
i = (〈ξi, ρi〉, 〈ηi, βi〉) be the accumulation of LDFNs and αγ� = (〈ξ�, ρ�〉,

〈η�, β�〉) be the LDFNs such that, αγ
i = αγ�∀i. Then

LDFFOWA(αγ
1, αγ

2, . . . , αγ
e) = αγ

� (6)

Proof. The proof is identical with Theorem 5.

Theorem 9. Let αγ
i = (〈ξi, ρi〉, 〈ηi, βi〉) be the accumulation of LDFNs.

Then, for LDFFOWA(αγ
1, αγ

2, . . . , αγ
e) = (〈ξx, ρx〉, 〈ηx, βx〉), we have

minτ(i)

{
ξτ(i) + ρτ(i)

}
+ minτ(i)

{
ητ(i) + βτ(i)

}
≤ ξx + ρx + ηx + βx ≤ maxτ(i)

{
ξτ(i) + ρτ(i)

}
+ maxτ(i)

{
ητ(i) + βτ(i)

}
Proof. The proof is identical with Theorem 6.

Theorem 10. Assume that αγ
i = (〈ξi, ρi〉, 〈ηi, βi〉) and αγ

i∗ = (〈ξi∗ , ρi∗〉, 〈ηi∗ , βi∗〉) are the
families of LDFNs, and also consider

LDFFOWA(αγ
1, αγ

2, . . . αγ
e) = αγ = (〈ξ, ρ〉, 〈η, β〉)
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and
LDFFOWA(αγ

1∗ , αγ
2∗ , . . . αγ

e∗) = αγ∗ = (〈ξ∗ , ρ∗〉, 〈η∗ , β∗〉).

Then,
ξ + ρ ≤ ξ∗ + ρ∗ , if ξτ(i) + ρτ(i) ≤ ξτ∗

(i)
+ ρτ∗

(i)

and
η + β ≤ η∗ + β∗ , if ητ(i) + βτ(i) ≤ ητ∗

(i)
+ βτ∗

(i)

Proof. The proof is identical with Theorem 7.

6. Decision-Making Algorithm Using Proposed AOs

In this MCDM methodology, we will look at each of the n possible solutions in terms
of m variety of attributes and rank them appropriately. It is critical to provide a team of p
extremely competent specialists, each of whose scores must be more than zero in this case
but whose overall score must be one.
You should remember that the option T ψ

j (j = 1, 2, . . . , n) was picked by the experts
OG k (k = 1, 2, . . . , p) after some discussion, and the parameters C k

i (i = 1, 2, . . . , m)

were also chosen; hence, the evaluation result is presented in terms of LDFNs, δγ p
ji =(〈

ξ
p
ji, ρ

p
ji

〉
,
〈

η
p
ji, β

p
ji

〉)
. Moreover, Wt is the WV for the attribute C k

i satisfying the condi-

tions, Wt ≥ 0 and ∑m
t=1 Wt = 1. The endorsed operator is applied with a view to construct

an MCDM for the LDF facts, which includes the levels outlined within the following
Algorithm 1.

Algorithm 1: MCDM approach based on propsoed AOs
Step 1:
Utilising “linguistic terms” (LTs), compute the weights of DMs represented as

LDFNs. The LTs are shown in Table 2. Consider =k =
(〈

ξk, ρk

〉
,
〈

ηk, βk

〉)
as the

LDFN for k-th DM. Consequently, the potential value of the k-th DM, ζk, can be
calculated as follows:

ζk =
=k

∑
p
k=1 =k

, k = 1, 2, 3, . . . , p (7)

where=k = ξk + (1 + ξk + ρk + ηk + βk)
(

ρk
ξk+ρk+ηk+βk

)
and clearly

∑
p
k=1 ζk = 1

Step 2:
Construct the decision matrices E G (p) = (Y

(p)
ji )n×m utilising the LDFNs obtaining

from the DMs.
Step 3:
Set up an included IF judgement matrix. It is crucial to observe that even as
producing the aggregated IF choice matrix utilising a collective judgement
method, all separate perspectives need to be summed and blanketed to establish
a collective perspective. The proposed AO will help the accompanying to this
quit:

Assume H =
(

Hji

)
n×m

is the integrated LDF decision matrix, where

Hji = LDFFWA
(
Y

(1)
ji ,Y(2)

ji , . . . ,Y(p)
ji

)
or

Hji = LDFFOWA
(
Y

(1)
ji ,Y(2)

ji , . . . ,Y(p)
ji

)
For convenience, we take Hji as Hji =

(〈
ξ ji, ρji

〉
,
〈

ηji, β ji

〉)



Axioms 2022, 11, 735 20 of 30

Algorithm 1: Cont.
Step 4:
If it is necessary to do so, normalise the LDFNs by applying the following formula
to turn the cost category features denoted by (κc) into benefit category features
denoted by (κb),

(ℵN
ji )n×m =

{
(Hji)

c; i ∈ κc

Hji; i ∈ κb.
(8)

where (Hji)
c displays the complement of (Hji). The normalised decision matrix

is given as ΓN =
(
ℵN

ji

)
n×m

.

Step 5:
Construct the score matrix by factoring in the score function (SF) of said LDFNs as

Ψ =
(

ξ̆ג
(
ℵN

ji

))
n×m

C k
1 C k

2 C k
3 . . . C k

m

T ψ
1

T ψ
2

T ψ
3

...
T ψ

m


ξ̆ג
(
ℵN

11
)

ξ̆ג
(
ℵN

12
)

ξ̆ג
(
ℵN

13
)

. . . ξ̆ג
(
ℵN

1m
)

ξ̆ג
(
ℵN

21
)

ξ̆ג
(
ℵN

22
)

ξ̆ג
(
ℵN

23
)

. . . ξ̆ג
(
ℵN

2m
)

ξ̆ג
(
ℵN

31
)

ξ̆ג
(
ℵN

32
)

ξ̆ג
(
ℵN

33
)

. . . ξ̆ג
(
ℵN

3m
)

...
...

...
. . .

...(
ℵN

n1
)

ξ̆ג
(
ℵN

n2
)

ξ̆ג
(
ℵN

n3
)

. . . ξ̆ג
(
ℵN

nm
)


Step 6:
In accordance with the idea of a scoring matrix denoted by Ψ, the total number of
choices and the weighted sum of their respective scores are calculated by T ψ

j.

U(T ψ
j) =

m

∑
i=1

W
ζ
i ξ̆ג

(
ℵN

ji

)
, (j = 1, 2, . . . , n).

where W
ζ
1,Wζ

2, . . .Wζ
m are the WV of the given criterion.

Assume that the weights are not specified and that
︷︸︸︷
ä is used to symbolise a

selection of them. In order to compute these indeterminate weights, we make use
of the mathematical formulation that is provided here:

Max g =
m

∑
i=1

U(T ψ
j)

under the constraints ∑m
i=1 W

ζ
i = 1. When using this approach, we should

probably determine our normalised WV. In this example, the constraints of the
situation require that we employ a linear programming paradigm as a good way
to compute the weights of the diverse criteria.

Step 7:
Determine the consolidated weighted LDF decision matrix Wζ by making use of a
normalised decision matrix ΓN and the WV. We utilised the AOs that are given
down below.

LDFFWA(ℵN
j1,ℵN

j2, . . . ,ℵN
jm)

or
LDFFOWA(ℵN

j1,ℵN
j2, . . . ,ℵN

jm)

Step 8:
Employing SF, determine the total score of the overall weighted consolidated
product. Evaluate each alternative depending on the SF, and then choose the
alternate with the greatest SF.
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Table 2. LTs for DMs.

Linguistic Terms LDFNs

Very pertinent (〈0.950, 0.100〉, 〈0.95, 0.05〉)

Pertinent (〈0.750, 0.150〉, 〈0.75, 0.15〉)

Medium pertinent (〈0.650, 0.200〉, 〈0.65, 0.20〉)

Un-pertinent (〈0.300, 0.500〉, 〈0.30, 0.50〉)

Very un-pertinent (〈0.100, 0.700〉, 〈0.10, 0.70〉)

7. Applications of the Proposed Framework

The lifespan and the existence of people can each be improved with the use of bio-
materials. It has become abundantly clear in recent years that the use of bio-materials has
become more desirable as a result of the ageing population that occurs in nearly all of the
sector’s countries. The elderly are at greater risk of difficult tissue insufficiency, which
makes them the number one driving force behind this demand. Both the biological and me-
chanical bio-compatibility of metal bio-substances have significant room for improvement.
It is highly desired that the bio-material used in implants has a longer shelf life or that
they feature normally in the course of an individual’s complete lifestyle without requiring
replacement or additional surgical techniques. Bio-materials are required to fulfil a number
of stipulations, which include excessive levels of corrosion and wear resistance, advanced
bio-compatibility, and appropriate mechanical compatibility.

In its most simple form, a biomaterial is any substance that is evolved mainly to be
used in a healthcare context. Bio-materials are materials, whether or not either naturally or
artificial, which are useful for the restoration of injured components of the body through
contact with dwelling mechanisms [55]. These substances are applied to both function
as a replacement for a human frame element or to help the physiological tactics of the
body. As an end result, bio-materials are able to interact with human cells, muscle mass,
or structures, and they occasionally perform the responsibilities that such entities could
generally perform [56]. The practical restorative engineering of various tissues may be
accomplished by using bio-materials. Further to this, there is a concept known as “nano
biomaterial”, which is a combination of the phrases “biomaterial” and “nanotechnology”.
The capacity to exist in touch with the cells of the dwelling organism without producing
an unacceptable degree of harm to the tissues is the most massive feature that separates a
biomaterial from some other cloth. This capability is what separates a biomaterial from
some other material [57]. Many years in the past, both scientists who examine bio-materials
and people who use clinical equipment have been inquisitive about the system of the way
a cooperatively appropriate cohabitation of bio-materials and cells can be mounted and
maintained. The field of bio-materials science has spent the last fifty years researching
the many varieties of bio-materials and makes use of those that can be fabricated from
them to replicate or regain the function of organs or tissues that have been damaged or
which have degenerated. Most effective within the u.s. are more than 13 million prostheses
and different scientific gadgets surgically positioned each year. Numerous areas of the
human frame, along with the artificial vessels within the cardiac, the stents inside the
blood arteries, the prosthetic implants within the joints, knees, hips, elbows, and ears, in
addition to the orthodontics systems, all employ bio-substances [58]. It is essential for a
biomaterial to be made of a bio-compatible material, as this is the primary characteristic
that must be possessed by the substance before it can be utilised in a biological system. In
addition, the material must possess great mechanical qualities, a high resistance to corrosion,
osseointegration, and exceptional resistance to wear, as well as ductility and a high degree
of hardness. One plausible explanation for the rise in the number of revision procedures
is that longer life expectancies are to blame for the phenomenon. As a consequence of
this, the situation is different now; as a result of developments in medical technology,
people live longer. In addition, the prognosis should be better for those who are physically
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traumatised as a result of sports or incorrect or excessive exercise habits as well as as a
result of automobile accidents and other types of accidents [59]. As a result, it is anticipated
that the implants would function well for a significantly longer period of time, maybe even
until the end of life, without requiring any revision surgery [60]. As a result, it is extremely
important to work toward the creation of a suitable material that possesses both a high level
of durability and outstanding bio-compatibility. Titanium alloys are quickly becoming the
material of choice for the majority of applications, despite the fact that numerous materials
are now being utilised as bio-materials [61].

The procedure described in the preceding subsection will be followed in order to
pick the appropriate material for the femoral component of the hip joint prosthesis. In the
collection of research that has been completed, a variety of approaches of selecting this
biomedical material have been described. The acetabulum and the femoral head make up
the hip joint, which is a significant load-bearing junction in the body. The hip joint is made
up of basically only those two elements. The insertion of the femoral head into the socket
known as the acetabulum, which is located in the pelvic bone, results in the formation of
the hip joint. The femoral head may move in and out of the acetabulum, allowing the leg to
rotate, move forward and backward, and move in and out of the center of the body. As
a result of the fact that it is responsible for bearing weight, the hip joint is one that must
possess both a suitable amount of range of motion and a sufficient amount of stability. Hip
arthroplasty is a surgical treatment that replaces or renews the damaged joint in persons
whose hip joint is badly calcified (osteoarthritis) or damaged. This process is performed
on patients who are candidates for hip replacement surgery. When significant discomfort,
mobility restrictions, and shortness of breath prevent patients from engaging in activities of
daily life, hip replacement surgery is the most effective therapeutic option. When applying
a hip prosthesis, having implants that are made of the right material and have the right
design elements might boost the likelihood of success. There are a variety of prostheses
available today, each made of a unique material and featuring a distinct design. The design
and material features of the chosen implant should make it possible for the prosthesis to
be straightforward, easily manufactured, reasonably priced, consistently dependable, and
durable. The fact that the design of hip replacement prostheses calls for many different key
qualities makes it difficult to come up with solutions using only one material. This adds an
additional layer of complexity to the process of selecting materials for the prostheses.

When a biomaterial is introduced into the human body, it is believed that no adverse
tissue reactions would occur. In addition, the material must possess a high resistance
to corrosion and fatigue, a low elastic modulus, a high mechanical power, and a lower
density than bone. The hip prosthesis consists of the femoral component, the acetabular
cup, and the acetabular interface. The femoral component serves as a replacement for the
femur. A hip prosthesis consists of three basic components: the femoral component, the
acetabular cup, and the acetabular interface. The natural femoral head is replaced with
the femoral component, a metal pin composed of a strong substance. This pin is put into
the femur’s hollowed-out shaft. The natural femoral head is replaced with the femoral
component, which is a metal pin composed of a strong substance. This pin is put into the
femur’s hollowed-out shaft. To implant the acetabulum into the pelvis, a soft polymer
acetabular cup that is connected to the ilium is utilised. The acetabular interface, which
connects the femoral component to the acetabular cup, is available in a number of material
configurations. This is performed to reduce the quantity of friction-induced wear debris.

The specific statement about the medical material selection problem is described as
follows:

This problem is associated with the hip prosthesis. In this procedure, the femoral head
is changed by a stiff pin that is inserted in the shaft of the femur, and the pelvic socket
is replaced by either a rigid or a soft cup that is fastened to the ilium. The compression
strength of compact bone is around 140 MPa, and its elastic modulus in the longitudinal
direction is approximately 14 GPa, whereas the elastic modulus in the radial direction is
approximately 1/3 of that value. When compared to the majority of technical alloys, these
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values are rather low. Live, healthy bone, on the other hand, is capable of self-healing
and has a high resilience to the exhaustion caused by loading. Both the pin and the cup
serve distinct purposes, and both are attached to the underlying bone structure by using
adhesive cement. In this particular investigation, the material for the pin has been taken
into consideration. We consider there are four materials: namely, T ψ

1= Co–Cr alloys –
Cast alloy (1), T ψ

2= Co–Cr alloys – Wrought alloy (2), T ψ
3= Ti–6Al–4V (3) and T ψ

4=
Unalloyed titanium (4). Three experts will be selected to assess the materials conditions
based on the indications listed in Table 3 as per [1].

Table 3. Criterion for land selection.

Criterion

C k
1 Tissue tolerance

C k
2 Tensile strength (MPa)

C k
3 Fatigue strength (MPa)

C k
4 Density (g/cm3)

C k
5 Wear resistance

C k
6 Elastic modulus (GPa)

Decision-Making Process

Step 1:
The LTs for each DM (doctor or engineer) are given in Table 4. By the LTs, find the DMs
weights by Equation (7); then, the DMs weights are ζ1 = 0.360, ζ2 = 0.317 and ζ3 = 0.322.

Table 4. Linguistic terms for DMs.

DM Linguistic Terms

OG1 Very appropriate

OG2 Medium appropriate

OG3 Appropriate

Step 2:
Now, find out the decision matrix E G (p) = (Y

(p)
ji )n×m in the format of LDFNs from DMs.

The judgement values, given through three DMs, are given in Tables 5–7.

Table 5. Assessment matrix acquired from OG1.

C k
1 C k

2 C k
3

T ψ
1

(
〈0.880, 0.700〉 〈0.350, 0.440〉

) (
〈0.700, 0.850〉, 〈0.220, 0.210〉

) (
〈0.750, 0.450〉, 〈0.250, 0.450〉

)
T ψ

2

(
〈0.950, 0.150〉, 〈0.610, 0.250〉

) (
〈0.650, 0.750〉, 〈0.450, 0.500〉

) (
〈0.750, 0.500〉, 〈0.550, 0.150〉

)
T ψ

3

(
〈0.750, 0.550〉, 〈0.350, 0.400〉

) (
〈0.850, 0.440〉, 〈0.440, 0.450〉

) (
〈0.650, 0.800〉, 〈0.550, 0.300〉

)
T ψ

4

(
〈0.650, 0.500〉, 〈0.650, 0.250〉

) (
〈0.760, 0.860〉, 〈0.550, 0.200〉

) (
〈0.650, 0.350〉, 〈0.150, 0.450〉

)
C k

4 C k
5 C k

6

T ψ
1

(
〈0.650, 0.500〉, 〈0.550, 0.120〉

) (
〈0.450, 0.600〉, 〈0.350, 0.150〉

) (
〈0.560, 0.690〉, 〈0.450, 0.330〉

)
T ψ

2

(
〈0.750, 0.490〉, 〈0.150, 0.650〉

) (
〈0.550, 0.650〉, 〈0.450, 0.250〉

) (
〈0.560, 0.460〉, 〈0.490, 0.210〉

)
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Table 5. Cont.

T ψ
3

(
〈0.340, 0.650〉, 〈0.150, 0.300〉

) (
〈0.550, 0.400〉, 〈0.250, 0.550〉

) (
〈0.500, 0.700〉, 〈0.550, 0.150〉

)
T ψ

4

(
〈0.850, 0.650〉, 〈0.150, 0.450〉

) (
〈0.560, 0.540〉, 〈0.750, 0.150〉

) (
〈0.560, 0.550〉, 〈0.450, 0.450〉

)

Table 6. Assessment matrix acquired from OG2.

C k
1 C k

2 C k
3

T ψ
1

(
〈0.450, 0.600〉, 〈0.350, 0.440〉

) (
〈0.700, 0.850〉, 〈0.350, 0.550〉

) (
〈0.880, 0.850〉, 〈0.350, 0.450〉

)
T ψ

2

(
〈0.750, 0.550〉, 〈0.650, 0.250〉

) (
〈0.650, 0.250〉, 〈0.450, 0.430〉

) (
〈0.650, 0.550〉, 〈0.550, 0.150〉

)
T ψ

3

(
〈0.650, 0.450〉, 〈0.350, 0.540〉

) (
〈0.550, 0.760〉, 〈0.450, 0.440〉

) (
〈0.350, 0.680〉, 〈0.540, 0.350〉

)
T ψ

4

(
〈0.770, 0.650〉, 〈0.250, 0.350〉

) (
〈0.540, 0.490〉, 〈0.550, 0.320〉

) (
〈0.560, 0.350〉, 〈0.150, 0.450〉

)
C k

4 C k
5 C k

6

T ψ
1

(
〈0.450, 0.540〉, 〈0.550, 0.230〉

) (
〈0.540, 0.990〉, 〈0.350, 0.450〉

) (
〈0.450, 0.490〉, 〈0.450, 0.340〉

)
T ψ

2

(
〈0.750, 0.860〉, 〈0.450, 0.430〉

) (
〈0.570, 0.870〉, 〈0.150, 0.560〉

) (
〈0.550, 0.670〉, 〈0.650, 0.250〉

)
T ψ

3

(
〈0.560, 0.540〉, 〈0.570, 0.120〉

) (
〈0.540, 0.790〉, 〈0.250, 0.550〉

) (
〈0.560, 0.790〉, 〈0.560, 0.350〉

)
T ψ

4

(
〈0.950, 0.550〉, 〈0.560, 0.230〉

) (
〈0.550, 0.670〉, 〈0.750, 0.150〉

) (
〈0.350, 0.750〉, 〈0.450, 0.540〉

)

Table 7. Assessment matrix acquired from OG3.

C k
1 C k

2 C k
3

T ψ
1

(
〈0.560, 0.780〉, 〈0.350, 0.500〉

) (
〈0.650, 0.550〉, 〈0.350, 0.450〉

) (
〈0.650, 0.850〉, 〈0.450, 0.150〉

)
T ψ

2

(
〈0.750, 0.550〉, 〈0.650, 0.310〉

) (
〈0.650, 0.550〉, 〈0.450, 0.350〉

) (
〈0.750, 0.670〉, 〈0.550, 0.250〉

)
T ψ

3

(
〈0.650, 0.250〉, 〈0.350, 0.500〉

) (
〈0.650, 0.450〉, 〈0.450, 0.410〉

) (
〈0.350, 0.430〉, 〈0.540, 0.340〉

)
T ψ

4

(
〈0.560, 0.870〉, 〈0.450, 0.250〉

) (
〈0.690, 0.670〉, 〈0.450, 0.150〉

) (
〈0.560, 0.350〉, 〈0.150, 0.450〉

)
C k

4 C k
5 C k

6

T ψ
1

(
〈0.550, 0.250〉, 〈0.250, 0.550〉

) (
〈0.540, 0.670〉, 〈0.350, 0.250〉

) (
〈0.450, 0.670〉, 〈0.570, 0.270〉

)
T ψ

2

(
〈0.750, 0.250〉, 〈0.340, 0.120〉

) (
〈0.560, 0.680〉, 〈0.150, 0.340〉

) (
〈0.560, 0.670〉, 〈0.410, 0.360〉

)
T ψ

3

(
〈0.350, 0.650〉, 〈0.150, 0.350〉

) (
〈0.350, 0.750〉, 〈0.250, 0.550〉

) (
〈0.250, 0.690〉, 〈0.560, 0.250〉

)
T ψ

4

(
〈0.360, 0.790〉, 〈0.150, 0.750〉

) (
〈0.540, 0.640〉, 〈0.260, 0.580〉

) (
〈0.350, 0.750〉, 〈0.450, 0.390〉

)
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Step 3:
To construct the aggregated LDF decision matrix, all individual opinions must be totalled
up and integrated to form a group opinion.

H =
(

Hji

)
be the aggregated LDF decision matrix, where

Hji = LDFFWA
(
Y

(1)
ji ,Y(2)

ji ,Y(3)
ji

)
=
(

ζ1 ∗Y
(1)
ji ⊕̃ζ2 ∗Y

(2)
ji ⊕̃ζ3 ∗Y

(3)
ji

)
. The aggregated

LDF decision matrix given in Table 8.

Step 4:
Here is no cost type attribute, so the normalised decision matrix will be ΓN =

(
ℵN

ji

)
n×m

,

given in Table 9.
Step 5:
Construct the score matrix by utilising the SF of LDFNs as Ψ =

(
Ξ̆ג
(
ℵN

ji

))
5×4

.

C>1 C>2 C>3 C>4 C>5 C>6
T ψ

1
>

T ψ
2

T ψ
3

T ψ
4


0.448402 0.486930 0.536408 0.588400 0.497964 0.516667
0.699891 0.540463 0.619389 0.530605 0.435513 0.557505
0.530242 0.530864 0.513675 0.445804 0.395927 0.523009
0.541545 0.579266 0.490864 0.441202 0.574909 0.442733


Table 8. Aggregated LDF decision matrix.

C k
1 C k

2

T ψ
1

(
〈0.383944, 0.430955〉, 〈0.351249, 0.46002〉

) (
〈0.409024, 0.382178〉, 〈0.343213, 0.422339〉

)
T ψ

2

(
〈0.621141, 0.262138〉, 〈0.643939, 0.271831〉

) (
〈0.517585, 0.381459〉, 〈0.461147, 0.435420〉

)
T ψ

3

(
〈0.592098, 0.346462〉, 〈0.355810, 0.480478〉

) (
〈0.495263, 0.384580〉, 〈0.446815, 0.434040〉

)
T ψ

4

(
〈0.416858, 0.414242〉, 〈0.471004, 0.307439〉

) (
〈0.400528, 0.402225〉, 〈0.541019, 0.222258〉

)
C k

3 C k
4

T ψ
1

(
〈0.458977, 0.335526〉, 〈0.366206, 0.344024〉

) (
〈0.573089, 0.428591〉, 〈0.480924, 0.271821〉

)
T ψ

2

(
〈0.476127, 0.376321〉, 〈0.557076, 0.179326〉

) (
〈0.513239, 0.322832〉, 〈0.348713, 0.416701〉

)
T ψ

3

(
〈0.382320, 0.543392〉, 〈0.544502, 0.328730〉

) (
〈0.390435, 0.594876〉, 〈0.264717, 0.277059〉

)
T ψ

4

(
〈0.645666, 0.382640〉, 〈0.150032, 0.449601〉

) (
〈0.401732, 0.395055〉, 〈0.274628, 0.516498〉

)
C k

5 C k
6

T ψ
1

(
〈0.351584, 0.506547〉, 〈0.433623, 0.286806〉

) (
〈0.416422, 0.524272〉, 〈0.489285, 0.314766〉

)
T ψ

2

(
〈0.371386, 0.480077〉, 〈0.249112, 0.398370〉

) (
〈0.449472, 0.472278〉, 〈0.529092, 0.276265〉

)
T ψ

3

(
〈0.408280, 0.524962〉, 〈0.250035, 0.549643〉

) (
〈0.331485, 0.578648〉, 〈0.581091, 0.241891〉

)
T ψ

4

(
〈0.434822, 0.482565〉, 〈0.615385, 0.268007〉

) (
〈0.362350, 0.585890〉, 〈0.469136, 0.474665〉

)
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Table 9. Normalised LDF decision matrix.

C k
1 C k

2

T ψ
1

(
〈0.383944, 0.430955〉, 〈0.351249, 0.46002〉

) (
〈0.409024, 0.382178〉, 〈0.343213, 0.422339〉

)
T ψ

2

(
〈0.621141, 0.262138〉, 〈0.643939, 0.271831〉

) (
〈0.517585, 0.381459〉, 〈0.461147, 0.435420〉

)
T ψ

3

(
〈0.592098, 0.346462〉, 〈0.355810, 0.480478〉

) (
〈0.495263, 0.384580〉, 〈0.446815, 0.434040〉

)
T ψ

4

(
〈0.416858, 0.414242〉, 〈0.471004, 0.307439〉

) (
〈0.400528, 0.402225〉, 〈0.541019, 0.222258〉

)
C k

3 C k
4

T ψ
1

(
〈0.458977, 0.335526〉, 〈0.366206, 0.344024〉

) (
〈0.573089, 0.428591〉, 〈0.480924, 0.271821〉

)
T ψ

2

(
〈0.476127, 0.376321〉, 〈0.557076, 0.179326〉

) (
〈0.513239, 0.322832〉, 〈0.348713, 0.416701〉

)
T ψ

3

(
〈0.382320, 0.543392〉, 〈0.544502, 0.328730〉

) (
〈0.390435, 0.594876〉, 〈0.264717, 0.277059〉

)
T ψ

4

(
〈0.645666, 0.382640〉, 〈0.150032, 0.449601〉

) (
〈0.401732, 0.395055〉, 〈0.274628, 0.516498〉

)
C k

5 C k
6

T ψ
1

(
〈0.351584, 0.506547〉, 〈0.433623, 0.286806〉

) (
〈0.416422, 0.524272〉, 〈0.489285, 0.314766〉

)
T ψ

2

(
〈0.371386, 0.480077〉, 〈0.249112, 0.398370〉

) (
〈0.449472, 0.472278〉, 〈0.529092, 0.276265〉

)
T ψ

3

(
〈0.408280, 0.524962〉, 〈0.250035, 0.549643〉

) (
〈0.331485, 0.578648〉, 〈0.581091, 0.241891〉

)
T ψ

4

(
〈0.434822, 0.482565〉, 〈0.615385, 0.268007〉

) (
〈0.362350, 0.585890〉, 〈0.469136, 0.474665〉

)

Step 6:
Consider that the DMs provide the following partial weight details about the attribute
weights:
Ψ = 0.15 ≤ W

γ
1 ≤ 0.40, 0.20 ≤ W

γ
2 ≤ 0.70, 0.30 ≤ W

γ
3 ≤ 0.60, 0.10 ≤ W

γ
4 ≤ 0.80,

0.05 ≤W
γ
5 ≤ 0.65, 0.10 ≤W

γ
6 ≤ 0.50

Relying on these data, the following optimisation framework can be developed:

Max g = 0.448402Wγ
1 + 0.699891Wγ

1 + 0.530242Wγ
1 + 0.541545Wγ

1

0.486930Wγ
2 + 0.540463Wγ

2 + 0.530864Wγ
2 + 0.579266Wγ

2

0.536408Wγ
3 + 0.619389Wγ

3 + 0.513675Wγ
3 + 0.490864Wγ

3

0.588400Wγ
4 + 0.530605Wγ

4 + 0.445804Wγ
4 + 0.441202Wγ

4

0.497964Wγ
5 + 0.435513Wγ

5 + 0.395927Wγ
5 + 0.574909Wγ

5

0.516667Wγ
6 + 0.557505Wγ

6 + 0.523009Wγ
6 + 0.442733Wγ

6

such that,
0.15 ≤W

γ
1 ≤ 0.40, 0.20 ≤W

γ
2 ≤ 0.70, 0.30 ≤W

γ
3 ≤ 0.60, 0.10 ≤W

γ
4 ≤

0.80,
0.05 ≤W

γ
5 ≤ 0.65, 0.10 ≤W

γ
6 ≤ 0.50

W
γ
1 +W

γ
2 +W

γ
3 +W

γ
4 = 1, W

γ
1 ,Wγ

2 ,Wγ
3 ,Wγ

4 ≥ 0.
By solving this model, we obtain W

γ
1 = 0.25,Wγ

2 = 0.20,Wγ
3 = 0.30,Wγ

4 = 0.10,Wγ
5 =

0.05,Wγ
6 = 0.10.

Step 7:
Evaluate the aggregated weighted LDF decision matrix by using the proposed AOs given
by Table 10.
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Table 10. Aggregated weighted LDF decision matrix.

T ψ
1

(
〈0.558013, 0.522136〉, 〈0.388174, 0.376082〉

)
T ψ

2
(
〈0.629921, 0.432568〉, 〈0.540640, 0.299443〉

)
T ψ

3
(
〈0.510652, 0.526887〉, 〈0.446086, 0.393355〉

)
T ψ

4
(
〈0.552423, 0.496814〉, 〈0.374417, 0.400546〉

)

Step 8:
Compute the score values of all alternatives.

Ξ̆ג(T ψ
1
)
= 0.511992

Ξ̆ג(T ψ
2
)
= 0.609637

Ξ̆ג(T ψ
3
)
= 0.509124

Ξ̆ג(T ψ
4
)
= 0.507370

At the end, the final ranking will be

T ψ
2 � T ψ

1 � T ψ
3 � T ψ

4.

Therefore, Co–Cr alloys – Wrought alloy is proposed as the best material.

8. Conclusions

The uses of bio-materials in the medical sector that have the qualities of being process-
able, sterile, and possessing a potent anti-infective capacity have received an increasing
amount of attention in recent years. However, certain discrepancies exist between the
performance levels of various materials; hence, determining how to select the appropri-
ate bio-materials is also an important issue to discuss. On the basis of this rationale, we
represent the challenge of selecting hip joint prosthesis materials as an MCDM problem
in an LDF context and offer a new MCDM approach to solve it with incomplete infor-
mation for characteristics. The studies that have been completed up until now indicate
that when assessing items, the aggregate ratings that are connected with them will not
be comparable even if a DM delivers an equal quantity of MSDs and NMSDs. In such
a scenario, we presented several novel fairness or neutrality operations based on LDFS
and proportionate distribution rules for membership and non-membership functions. Fur-
thermore, we placed an emphasis on accuracy and relevance during the decision-making
process, which is determined by the DM’s disposition. We added to the LDFN information
a “linear Diophantine fuzzy fairly weighted averaging (LDFFWA) operator” as well as a
“linear Diophantine fuzzy fairly ordered weighted averaging (LDFFOWA) operator”, both
of which were modelled after fairly operations. An in-depth conversation was had on the
many aspects of the suggested AOs. The fundamental benefit of the proposed operators
is that they not only make it possible for separate pairs of LDFNs to interact with one
another, but they also make it easier to investigate the attitude characteristics of the DMs by
permitting a categorical treatment of the degrees of the LDFSs. This is the primary benefit.
The suggested technique is validated by testing it against a problem requiring the selection
of materials.
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