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Abstract: The increased use of urban technologies in smart cities brings new challenges and issues.
Cyber security has become increasingly important as many critical components of information and
communication systems depend on it, including various applications and civic infrastructures that
use data-driven technologies and computer networks. Intrusion detection systems monitor computer
networks for malicious activity. Signature-based intrusion detection systems compare the network
traffic pattern to a set of known attack signatures and cannot identify unknown attacks. Anomaly-
based intrusion detection systems monitor network traffic to detect changes in network behavior and
identify unknown attacks. The biggest obstacle to anomaly detection is building a statistical normality
model, which is difficult because a large amount of data is required to estimate the model. Supervised
machine learning-based binary classifiers are excellent tools for classifying data as normal or abnormal.
Feature selection and feature scaling are performed to eliminate redundant and irrelevant data. Of
the 24 features of the Kyoto 2006+ dataset, nine numerical features are considered essential for model
training. Min-Max normalization in the range [0,1] and [−1,1], Z-score standardization, and new
hyperbolic tangent normalization are used for scaling. A hyperbolic tangent normalization is based
on the Levenberg-Marquardt damping strategy and linearization of the hyperbolic tangent function
with a narrow slope gradient around zero. Due to proven classification ability, in this study we
used a feedforward neural network, decision tree, support vector machine, k-nearest neighbor, and
weighted k-nearest neighbor models Overall accuracy decreased by less than 0.1 per cent, while
processing time was reduced by more than a two-fold reduction. The results show a clear benefit
of the TH scaling regarding processing time. Regardless of how accurate the classifiers are, their
decisions can sometimes differ. Our study describes a conflicting decision detector based on an XOR
operation performed on the outputs of two classifiers, the fastest feedforward neural network, and
the more accurate but slower weighted k-nearest neighbor model. The results show that up to 6% of
different decisions are detected.

Keywords: anomaly detection; binary classification; feature scaling; machine learning

1. Introduction

The rapid development of smart cities reveals computer network connectivity and
interoperability issues and highlights the problems that can arise in large-scale hetero-
geneous data processing. These issues are obstacles to organic efforts to improve urban
intelligence and environmental sustainability while offering significant potential for key
technologies and engineering practices in data-driven smart city systems. Understanding
data management is important for unlocking smart cities [1,2]. Leveraging real-time data
improves the operational efficiency, connectivity, decision-making, and overall performance
of Internet of Things (IoT)-based computer networks and communications platforms for
data collection, device management, and cloud solutions. The authors of [3] provide a real-
istic view of how organizations can evolve to the next level of maturity and how the forces
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driving this transition can adopt and benefit from IoT. Cloud services enable excessive
connectivity between various IoT devices and sensors, resulting in billions of connected
devices and massive amounts of data. Three principles must be followed: data must be sent
over multiple channels dynamically, it must be secure, and it must be scalable. With the
development of smart city technology, network security threats have become an important
obstacle to maximizing the benefits of data-driven technologies, and intrusion detection
has become an important prerequisite for protecting sensitive data [4,5].

The intrusion detection system (IDS) is derived from the human immune system (HIS),
which consists of humoral immunity that protects the body from pathogens from outside
the body (similar to detecting malicious attacks). Similarly, cell-mediated immunity reacts
to self cells deviation (a negative selection process related to detecting abnormalities) [6].

The primary purpose of an intrusion detection system is to monitor network traffic
to detect patterns (signatures) of malicious attacks or deviations from standard network
functionality. A signature-based IDS compares the anonymous network data patterns
against a known set of attack signatures. It is the simplest and most effective method against
various common attacks. However, the performance of the signature-based IDS is limited
to known attacks, i.e., the detector cannot identify unknown attacks. On the other hand, to
detect changes in network behavior anomaly-based IDS monitors the state of the network
traffic and generates alerts when abnormalities are detected [7,8]. Anomaly detection’s
main benefit is identifying previously unknown suspicious behavior or known malicious
activity. The biggest challenge is determining what is considered normal computer network
behavior. Developing statistical models for normal network behavior is difficult because
model evaluation requires a large amount of data, which takes time and storage [9].

Binary classifiers based on supervised machine learning (ML) are good candidates
for detecting “normality”, although they require large amounts of data [10]. The authors
of [11] provide publication citation statistics for various ML techniques collected from
2005 to 2020. The results show that the most cited articles are related to Support Vector
Machines (SVMs), followed by publications on neural networks, Decision Trees (DTs), and
nearest-neighbor models.

In this study, we present five standard binary classifiers: the k-Nearest Neighbor
(k-NN), weighted k-NN (wk-NN), DT, SVM, and Feedforward Neural Network (FNN). A
k-NN is the most well-known distance-based algorithm that assigns a new instance to a
class to which most of its k nearest neighbors belong [12,13]. A k-NN model with k = 10 and
a similarity measure is based on Euclidean distance because of its robustness to noisy data,
flexibility, and easy implementation [14]. The wk-NN model is used because it extends
the k-NN model to improve the accuracy by heavily weighting neighbors in the decision
who are closer to the new instance than neighbors who are more distant [15]. The weights
are calculated as the inverse square of the Euclidean distance [16]. Medium Gaussian
SVM provides high prediction speed in binary classification [15]. The model classifies
instances in n-dimensional space using a hyperplane. The model uses a hyperplane to
classify instances in n-dimensional space [17]. DT models predict the class label in input
data based on decisions from the root to the leaf nodes [18,19]. Due to its high prediction
speed and low memory costs, medium DT (Iterative Dichotomiser 3 algorithm) with 20
splits is used [16]. A feedforward neural network (FNN) with one hidden layer (nine
input, nine hidden, and one output neuron) is used due to its fast processing speed and
generalization ability [14,15]. It is one of the simplest and quickest models that rely on
backpropagation to produce results based on the predicted probabilities and classification
thresholds. The calculation is done by transferring the data from the input to the output
and then propagating the error of the cost function backward to adjust the weights [20].

The Kyoto 2006+ dataset was used as a benchmark for the experiments because
it was created for anomaly detection and contained records of more than ten years of
actual network traffic data collected from honeypots on five computer networks within
and outside Kyoto University [21]. Of 24 features, 14 statistical features are extracted
from the KDD Cup ‘99 dataset, and 10 additional features were added by the authors for
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further network analysis and evaluation of the other network-based intrusion detection
systems [22]. The Kyoto 2006+ dataset provides labeled instances that do not describe
exact attack-specific details, but give a separation between normal and abnormal network
traffic [23].

All irrelevant features of the Kyoto 2006+ dataset are removed using feature selection
and feature scaling techniques. Feature selection is used to remove all categorical features,
connection duration features, statistical features and features intended for further analysis.
After identifying the nine relevant numerical features, the Min-Max normalization in the
ranges [0,1] and [−1,1], Z-score standardization, and a novel tangent-hyperbolic (TH)
normalization are used for scaling.

The idea of TH normalization is to scale the features to a fixed range [−0.7616,+0.7616],
i.e., [tanh(−1), tanh(1)], and then use a Levenberg-Marquardt (LM) damping strategy to
speed up training and improve model performance [24,25]. The results show that TH
scaling provides clear benefits in reducing processing time, which improves the efficiency
of IoT and cloud computing operations [26].

The performance of the above models is compared in terms of processing time, ac-
curacy, F1-score, false alarms, and true positive rate. Each classifier needs to make very
accurate decisions about anomalies. However, regardless of the overall accuracy of the
classifiers, when working in parallel, one may consider network traffic normal while the
other detects anomalies, and vice versa. This paper proposes an XOR-based detector to
detect unusual conflicting decisions in computer networks.

In our previous work [14,15], we introduced the concept of XOR detection. Since
the result of the XOR operation is 1 if the two bits are different, if the decisions are other
(for non-zero bits), the total number of different decisions can be calculated as the sum
of all the results. The XOR-based detector is designed to compare the outcomes of two
binary classifiers: FNN (eager learner) and wk-NN (lazy learner). The results show a small
percentage of conflicting decisions that are not affected by record size, model accuracy,
or processing time. However, it can be used to warn not only of anomalies but also of
potentially harmful activities in smart city computer networks concerning privacy, data
breaches, and more.

The remainder of this paper is organized as follows: Section 2 presents a systematic
review of relevant references on anomaly-based intrusion detection. The Kyoto 2006+
dataset is compared with 13 other datasets most commonly used for IDS experiments.
Feature selection and feature scaling are briefly introduced and the TH normalization is
described in detail. Section 3 introduces the concept of an XOR-based conflicting decisions
detector. Section 4 presents the experimental results. Section 5 concludes this paper.

2. Related Work

ML models are proven to be essential and efficient in detecting risks and threats to
computer networks. Many ML algorithms attempt to find data trends by comparing the
features of data points. Supervised ML algorithms are widely used in computer network
traffic analysis. The performance evaluation and comparative analysis of supervised ML
used in classification are presented in [11,27–32].

The authors of [1] present a literature review of machine learning techniques used in
various smart city applications. Research methods include the classification, estimation, and
performance of machine learning algorithms classified into one of four categories: DT, SVM,
artificial neural network (ANN), and advanced machine learning methods, including deep
learning (DL), ensembles, and hybrid approaches. The study found that ensembles and
hybrid methods perform better due to their high accuracy and low total cost as compared to
DL. However, these methods take more time to process than single methods. Furthermore,
it has been shown that SVM and DT outperform ANN in terms of accuracy and various
other metrics. However, since the differences were small, the authors concluded that either
model could be used. Performance evaluation and comparative analysis of FNN, SVM, DT,
k-NN and wk-NN classifiers can be found in [3,17,28,31–40].
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The authors of [41] propose a set of tests to investigate the effectiveness of supervised
ML algorithms in anomaly detection. As a result of the survey findings, the model’s
evaluation is impeded by two major issues. First, accurate classification requires a large
amount of labeled data, which takes time. Second, different feature scales necessitate
feature scaling. If the input contains different data, the model may diverge, overestimate,
underestimate or ignore some parameters, reducing the estimation efficiency [42,43].

The goal of feature selection is to find a subset of features that can reduce model
complexity, minimize generalization errors, provide better predictive power, and provide
fast model evaluation without significantly affecting its performance. Feature selection
can be supervised [43,44], unsupervised [45,46] or semi-supervised [47,48], depending on
whether the training set is labeled or not. In [17], the authors propose a feature selection
method to save storage space and allow feature selection to speed up classification algo-
rithms. The authors of [49] and [50] use feature selection to remove irrelevant features
from the Kyoto 2006+ dataset. In [51], the authors propose an FPA algorithm, compare it
with three other IDSs with 15 relevant features from the Kyoto 2006+ dataset, and show
that Service, Flag, and Srv_serror_rate are the most essential features. The PDS method for
feature selection has been introduced in [49]. The authors found 18 features relevant for
k-NN. Service-aware partitioning of datasets is used to handle enormous data flexibility
and improve classification accuracy and processing time as described in [50]. Eighteen
features were found to be essential for anomaly detection.

In addition to feature selection, feature scaling is often used to reduce the mutual
influence of features and their negative impact on model evaluation if they are on drastically
different scales. The two most well-known feature scaling methods are normalization,
which shifts and rescales features to a fixed range and ensures the consistency of all features,
and Z-score standardization, which shifts the data according to a Gaussian distribution [17].
The authors in [52] and [53] describe Min-Max normalization for network intrusion using
ML models on the selected Kyoto 2006+ dataset. Various feature selection methods have
been proposed. In their study, the authors investigated the effects of Z-score and Min-Max
normalization on the accuracy of the J48 classifier [54]. In [30], the authors presented a
comparative analysis of ML-based classifiers for anomaly-based intrusion detection based
on Z-score standardization as a pre-processing step. In [16], the authors summarize research
on the effect of feature scaling within ±1 range on DT, SVM, FNN, k-NN and wk-NN
models. The results show that all classifiers have high accuracy and a short processing time.

Table 1 summarizes the most relevant research on feature selection (estimation effi-
ciency reduction, feature relevance, storage and training time minimization), feature scaling
(Min-Max normalization, Z-score standardization), and ML-based classification (FNN, DT,
SVM, k-NN and wk-NN models).

Table 1. Summary of the related work.

Authors Year Feature Selection/Feature Scaling Classifiers

Band et al. [34] 2022 The most informative feature. Min-Max. ANN, DT, SVM

Lin et al. [13] 2022 Point-biserial selection. Cluster-center scaling. k-NN

Shresta et al. [28] 2021 Estimation efficiency reduction. Feature relevance. DT, k-NN

Al-Imran and Ripon [53] 2021 85 network flow features. Min-Max. DT, k-NN

Kousis and Tjottjis [40] 2021 PCA. Normalization. ANN, DT, k-NN, SVM

Pai et al. [31] 2021 Sequential search. Standardization DT, SVM

Kumar et al. [11] 2021 PCA. ANN, DT, k-NN, SVM

Protic and Stankovic [16] 2021 Numerical features selection. Min-Max. DT, FNN, k-NN, SVM, wk-NN

Kumar et al. [30] 2020 ANOVA F-test, Z-score. DT
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Table 1. Cont.

Authors Year Feature Selection/Feature Scaling Classifiers

Protic and Stankovic [15] 2020 Numerical features selection. Min-Max. FNN, wk-NN

Obaid [54] 2019 PCA, Min-Max, Z-score. DT

Ruggieri [18] 2019 Exact enumeration. DT

Abiodun et al. [33] 2018 Estimation efficiency reduction. ANN, FNN

Maza and Touharia [39] 2018 Incremental, decremental, random feature selection. DT, SVM

Nawi et al. [42] 2013 Min-Max, Z-score. ANN

2.1. The Kyoto 2006+ Dataset

Over the years, researchers have conducted intrusion detection experiments on a
variety of data sets including ADFA, AWID, CAIDA, CIC-IDS-2017, CIDDS-001, CSE-CIC-
2018, DARPA, IRSC, ISCX 2012, KDD Cup ‘99, Kyoto 2006+, NSL-KDD, UGR’16, and
UNSW-NB15 [11,35,53,55–59]. Table 2 displays the most frequently used datasets.

Table 2. Description of the most frequently used datasets.

Dataset Year of
Creation Types of Attacks Number of

Features Type of Traffic Content of the Dataset

ADFA 2014
Brute force, Java/Linux

meterpreter, C100
webshell

26 Hybrid Linux/Windows OS system
call.

AWID 2015 Wi-fi 802.11 attacks 156 Emulated Wireless LAN traffic.

CAIDA 2007 Distributed Denial of
Service Not used Hybrid

Recorded on commercial
backbone links from high

speed monitors.

CIC-IDS-2017 2017 Botnets, DDoS, Goldeneye,
Hulk, HTTP 80+ Emulated 5-day packet-based

network traffic.

CIDDS-001 2017 DoS, Bruteforce,
Ping/Port Scan 14 Emulated 4 weeks traffic form

OpenStack and Ext. servers.

CSE-CIC-2018 2018

FTP/SSH potator, Dos,
DDoS, Web attacks,

1st/2nd level infiltration,
botnet.

80+ Emulated 10 days computer
network traffic.

DARPA 1998–1999 DoS, R2L, U2R, probe 41 Emulated 7 weeks of
packet-based traffic.

IRSC 2015 DoS, R2U, surveillance Not available Hybrid Sudans university network.

ISCX 2012 2012 Infiltrating, DDoS, HTTP,
SSH 20 Emulated Packet-based traffic (7 days).

KDD Cup ‘99 1998 Denial of Service, R2L,
U2R, probing 42 Emulated 5 weeks of

packet-based traffic.

Kyoto 2006+ 2006–2015 Port scan, malware,
shellcode, DoS 24 Real 10 years of real

network traffic.

NSL-KDD 1998 Denial of Service, R2L,
U2R, probing 42 Emulated

KDD-Cup ‘99 dataset with
redundant and duplicate

records excluded.
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Table 2. Cont.

Dataset Year of
Creation Types of Attacks Number of

Features Type of Traffic Content of the Dataset

UGR’16 2016 Denial of Service,
Portscans Botnet 41 Hybrid

Network traces were
captured in tier-3 ISP for

four months.

UNSW-NB15 2015 Contemporary attacks
behavior,. 49 Hybrid tcpdump traces over 31 h.

The experiments in this study are based on the Kyoto 2006+ dataset for several reasons.
First, most datasets are emulated or hybrid, except for the Kyoto 2006+ dataset. The Kyoto
2006+ dataset was collected over the ten years from various computer networks inside and
outside the University of Kyoto. The dataset’s first version was created by collecting real
network traffic data from 2006 to 2009 from ~350 honeypots including two darknet sensors
with ~300 unused IP addresses and various other IDS. It contains about 1 billion instances
of normal and abnormal data. A new dataset version includes ~20 GB of additional data
collected from 2009 to 2015. In addition, although the Kyoto 2006+ dataset includes DoS,
exploits, port scans, malware, and shellcode attacks, any other details about types of attacks
are not given; there is no information about payload or packet traces. [36]. Table 3 describes
the Kyoto 2006+ dataset.

Table 3. The Kyoto 2006+ dataset.

No Feature Description

1 Duration Connection duration [s].

2 Service Type of connection service.

3 Source bytes # B sent by source IP address.

4 Destination bytes # B sent by destination IP address.

5 Count # of connections with same source/destination IP addresses to those of current connection
in past 2s.

6 Same_srv_rate % of connections to the same service in the feature Count

7 Serror_rate % of connections that have ‘SYN’ errors in the feature Count.

8 Srv_error_rate % of connections that have ‘SYN’ errors in Srv_count in past 2s.

9 Dst_host_count Source/destination IP addresses are the same as the current connection (among past 100).

10 Dst_host_srv_count The number of connections whose service type is also the same to that of the
current connection.

11 Dst_host_same_src_port_rate % of connections whose source port is the same to that of the current connection
in Dst_host_count.

12 Dst_host_serror_rate % of connections that have ‘SYN’ errors in Dst_host_count.

13 Dst_host_srv_serror_rate % of connections that have ‘SYN’ errors in Dst_host_srv_count.

14 Flag The state of the connection at the time of connection was written.

15 IDS_detection Reflects if IDS triggered an alert for the connection.

16 Malware_detection Indicates malware.

17 Ashula_detection Shellcode and exploit codes were in the connection.

18 Label Indicates an attack.

19 Source_IP_Address Source IP address used in the session.
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Table 3. Cont.

No Feature Description

20 Source_Port_Number Session’s source port number.

21 Destination_IP_Address Also sanitized.

22 Destination_Port_Number Session’s destination port number.

23 Start_time Start of the session.

24 Duration Session duration.

IDS Bro is used to convert packet traffic into a session format. It is a network-based
analytic system focusing on high-performance network security monitoring [22]. Bro’s
event engine receives Internet Protocol packets and converts them into events. The policy
script interpreter (PCI) then generates the output. Table 4 describes an example of a
session-based format.

Table 4. An instance from a daily record.

No Type Value
1 Statistical 0.52
2 Categorical smtp
3 Statistical 3333
4 Statistical 244
5 Numeric 1.00
6 Numeric 1.00
7 Numeric 0.00
8 Numeric 0.00
9 Numeric 6.00

10 Numeric 99.00
11 Numeric 0.00
12 Numeric 0.00
13 Numeric 0.00
14 Statistical SF
15 For further analysis 0
16 For further analysis 0
17 For further analysis 0
18 Numeric 1
19 Categorical fdfd:c3e9:3c9c:264d:052b:4470:1f85:3407
20 Categorical 41339
21 Categorical fdfd:c3e9:3c9c:9f52:7d2e: 27ee:079e:0f3f
22 Categorical 25
23 Categorical 00:00:36
24 For further analysis 0.523710

The main problem related in evaluating anomaly detectors on the Kyoto 2006+ dataset
is the large amount of recorded data. The authors of [49] propose a PDS method for
feature selection from the Kyoto 2006+ dataset to obtain 18 relevant features. The discarded
features are prediction labels indicating the type of attack and the source and destination
IP addresses. The authors have also discarded the Start_time feature due to it having many
different values. In [50], the authors propose a technique for partitioning datasets with
a service that can handle big data flexibly. The authors use features indexed 1–14, 20, 22,
and 24 (18 features in total), because the Kyoto 2006+ dataset contains session-specific
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information. The authors of [51] discuss classification problems caused by unwanted large
features. They proposed the FPA algorithm and compared its performance with three other
IDS algorithms using 15 features from the Kyoto 2006+ dataset. The results show that
Service, Flag and Srv_serror_rate are the three most essential features.

In the experiments presented here, the problem of the dataset size issue is addressed
using a feature selection step. Categorical features, statistical features on connection
duration, and features for further analyses are removed from the data set. Nine numerical
features remained for model evaluation. Feature Label (18) is used to identify sessions as
normal or abnormal.

2.2. Evaluation Processes and Performance Metrics

Pre-processing, binary classification, and detection of opposing decisions are three
mutually related experiments organized to follow the process from feature selection to the
detection of the differences in the decisions about anomalies. This structured framework
aims to show how novelties in the pre-processing step affect Accuracy, False alarms, True
positive rate, F1-score, and processing time.

2.2.1. Pre-Processing Steps

The purpose of pre-processing is to clear the data set of irrelevant features, since the
large amount of data required for model evaluation makes this process time-consuming.
The authors of [60] argue that the main goal of collecting data from smart city computer
networks is to obtain accurate and comprehensive data. These data are raw and noisy,
coming from various sources, and must be pre-processed. Data pre-processing is needed
because entering raw data to the training model will not produce acceptable results. The pre-
processing shown here consists of two steps: (1) feature selection; and (2) feature scaling.

According to the authors of [61] and [62], the literature implies that users who are
knowledgeable about their dataset can select features that match some criteria based on
their knowledge and experience. Following this, the feature selection proposed in this paper
is performed to remove all categorical features, connection duration features, statistical
features, and features used for further analysis, as follows: (1) Remove all categorical
features (17 features are left for model training: 1, 3–17, 24); (2) All statistical features and
features intended for further analyses are cut. Finally, features 5–13 are used to evaluate
the model. The feature Label is used to indicate the presence of an attack. The original data
set has three labels: 1 for standard sessions, −1 for known attacks, and −2 for unknown
attacks. However, since unknown attacks are sporadic in the dataset, we also assign label
−1 to unknown attacks.

The second stage in the pre-processing step is to implement feature scaling, since the
scale of these features varies extensively. We show the results for Z-score standardization,
Min-Max normalization in range [0, 1], and Min-Max normalization in range [−1,1] to show
that different feature scales can produce different results. We also introduce a novel TH
feature scaling methodology inspired by the tangent-hyperbolic function (tanh), its sharp
gradient (tanh’), and the damping strategy of the LM algorithm applied to the quasi-linear
part of the tanh function.

The tangent hyperbolic tanh(x) is an S-shaped, zero-centered function, with a very
sharp gradient anh(x)′ = 1− tanh(x)2, x = 0, i.e., tanh(x)′x→±0 ≈ 1. Because a portion of
the tanh function corresponding to the values tanh(±1) ≈ ±0.7616 can be considered (quasi)
linear, this property can be used to constrain the instances to the same symmetrical fixed
range [−0.7616, 0.7616]. The TH methodology scales features in such a way that n instances
x(i), i = 1, . . . , n in the feature-vector can be determined as follows (Equation (1)):

x(i)TH = tanh

(
x(i)− xMax+xMin

2
xMax−xMin

2

)
, (1)
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where x(i)TH represents the scaled instance, and xMax and xMin represent maximum and
minimum values of unscaled features, respectively. The nonlinear iterative LM algorithm
combines the first-order gradient descent (GD) with the second-order Gauss-Newton (GN)
algorithms to find the global minimum of the cost function f : R→ R . The GD minimizes
f according to the search direction determined by the negative value of the gradient and
the step size. It is accurate but slows down near the optimum. When this happens, the
damping strategy switches from the GD to the much faster GN algorithm based on the
second-order derivative. The LM algorithm approximates the calculation of the Hessian
matrix (H) with the matrix products of the Jacobians (J) so that H ≈ JxJT assuming that
the error function is approximately quadratic near the optimal solution, following Taylor’s
truncated formula [62,63]. Assume that the iterates of the algorithm are x(1), x(2), . . . , x(m)

and p is the optimal solution of the algorithm. The LM algorithm finds the iterate x(m+1) by
minimizing the first and second terms in the expression given in Equation (2).∣∣∣∣∣∣∣∣ f̂ (x, x(m)

)∣∣∣∣∣∣2 + λ(m)

∣∣∣∣∣∣∣∣x, x(m)

∣∣∣∣∣∣∣∣, λ(m) > 0, (2)

such that f̂ (x, p) ≈ f (x), and x ≈ p. λ(m) denotes the adaptive damping parameter, which
varies with the step size. Therefore, the iterate x(m+1) can be determined as follows (see
Equation (3)):

x(m+1) = x(m) −
(

JTJ + λ(m)I
)−1

JT f
(

x(m)
)

, (3)

where I represents the identity matrix. When λ(m) → ∞ the LM algorithm works as a GD
algorithm because H + λ(m)I→ I . Otherwise, if λ(m) → 0 the LM algorithm behaves like
the GN algorithm because x(m) is close to the optimal solution.

2.2.2. Performance Metrics

A two-step classification scheme is used to determine which of two classes a new
instance belongs to. First, the classifiers are trained using 70% of instances, and the
remaining 30% is used to test the models. A binary confusion matrix is used to describe
the measurement performance of classifiers given that the true values of the data set
are known and the results consist of two classes. True negative (TN) and true positive
(TP) values identify negative and correctly classified positive results. The false positive
(FP, false alarm) value indicates the misclassification of normal data, whereas the false
negative (FN) value denotes an incorrectly assigned anomaly. The false alarm exists when
the observation is negative with positive prediction, i.e., indicates the value which is the
number of actual negative examples classified as positive. The true positive rate (TPR),
also known as Recall or Sensitivity, is the ratio of the correctly identified positive classes, as
shown in Equation (4).

TPR = Recall = Sensitivity =
TP

TP + FN
. (4)

The TPR indicates how well the model recognizes a positive class. It measures all
possible classes (how many are correctly predicted) and must be as high as possible. It is
useful when FN dominates FP. Also note the Positive predicted value (PPV), known as
Precision, given in Equation (5).

Precision =
TP

TP + FP
. (5)

Precision describes how many possible predicted classes are positive and measures
the probability that the positive class is correct. Since Precision shows the accuracy of the
TP class, it should be as high as possible. When it is difficult to compare the models with
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high Recall and low Precision, their harmonic mean, also known as F1-score or F1, can be
used to indicate the similarity of the two results (See Equation (6)):

F1 =
1

1
Recall +

1
Precision

=
TP

TP + 1
2 (FP + FN)

. (6)

However, because the F1-score is difficult to interpret, it is unknown whether the
classifier minimizes Precision or Recall. Therefore, a full picture of the results is provided
when the F1-score is used in combination with other metrics. The accuracy of the classifier
(ACC) given by Equation (7) determines how many classes are correctly predicted.

ACC =
TP + TN

TP + TN + FP + FN
. (7)

Accuracy should be as high as possible. It represents the ratio of correct classifications
to the total number of instances. It explains how often the model predicts the right result.
In the results presented in this paper, classification performance is discussed in terms of
ACC, FP, TPR, F1-score, and processing time (tp = ttrain + ttest).

3. Proposed Work

In machine learning, classification refers to predicting a class label for a given instance
of input data. A supervised ML model learns from the training set and its true labels and
then makes predictions on the test set. Binary classification is used when a binary label
is assigned to an unknown data instance. Figure 1 depicts a diagram of the classification
process for five binary classifications presented in this work.
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First, the Kyoto 2006+ dataset has been relieved of all irrelevant features. The feature
scaling is then done. The classifier is trained using a known set of data instances in the
training phase. The classifier is then tested on an unknown data set. Each classifier is
expected to be highly accurate in decision-making.

However, regardless of the accuracy of the classifiers, when working in parallel,
one may detect anomalies while the other considers the network data normal, and vice
versa. We propose an XOR-based detector of conflicting decisions designed to compare
the outcomes of two binary classifiers. The basic idea of this detector is to apply an XOR
bitwise operation to the classification results. Figure 2 shows the conceptual design of a
detector that makes a decision based on the outputs of the FNN (eager learner) and wk-NN
(lazy learner) [15].
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In conflicting decision detection, we consider it insignificant whether the outcomes
of the classifiers are both true or false. What is considered necessary is that the results
differ. If the classifiers make different decisions, the XOR logical operation performed on
their outputs results in a total of one; otherwise, the result is zero. The number of different
decisions can then be determined, as in Equation (8):

sumxor =
n

∑
i=1

xor(out1i, out2i), (8)

where sumxor represents the cumulative sum of n decisions, out1i and out2i are outcomes
of the classifiers for i = 1, . . . , n, and xor(out1i, out2i) is logically true (1) if the decisions
differ, otherwise the result is false (0). If highly sensitive data must be protected, detection
of opposing decisions can help raise additional alarms, related not only to the anomalies
in the computer network but also to the potentially harmful non-standard challenges in
5G networks concerning privacy centered around location tracking, semantic information
attacks, leakage from access points, etc. In [64,65], the authors discuss security in terms of
alert range and accuracy of criteria selection.

4. Results and Discussion

The MATLAB classification learner is used to compare the effects of the feature se-
lection on binary classification. Initially, the features are free of Not-a-Number (NaN)
values that MATLAB does not recognize. In the first part of the experiments, accuracy and
processing time for 17 and nine features were compared. Table 5 displays ACC and tp for
four daily records, with different numbers of instances in the data sets.

For all other models, the processing time was significantly shorter when nine features
were used for model evaluation, compared to the time when 17 features were used. As
expected, the processing time is as long as the number of instances increases. At the same
time, the accuracy of the SVM model decreased to ~0.2%, followed by the k-NN and
wk-NN models at ~0.8%, and the DT model at ~2%. For these reasons, nine features are
assumed to be sufficient for use in experiments on the effects of feature scaling on accuracy
and processing time and on XOR-based opposing decision detection. In this part of the
experiments, the feedforward neural network was not tested because it does not deal with
non-numerical features.

In the second part of the experiment, the effect scaling feature is presented. A daily
record of the Kyoto 2006+ dataset of approximately 60,000 instances was used as a bench-
mark. The experiments were performed as follows. First, the features are freed of NaN
values and a subset of 57,300 instances is used as a benchmark for the experiments. Second,
all irrelevant features are removed. Feature Label is left for the decision about anomalies;
when Label = 1, the network traffic is considered normal; otherwise, anomalies are detected
(Label = −1). Third, four feature scaling methods are used: TH, Min-Max in the range
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[0,1] and [−1,1] and Z-score standardization. The Z-score standardization was first used
for training.

Table 5. ACC and tp for four daily records.

Number of Instances Model ACC (9 Features) [%] tp (9 Features) [s] ACC (17 Features) [%] tp (17 Features) [s]

158,570

k-NN 98.3 275.72 99.0 1000.8

wk-NN 98.4 277.32 99.1 1019.15

DT 97.2 3.8452 98.4 14.241

SVM 98.1 449.35 98.4 467.7

127,740

k-NN 98.2 193.82 98.6 682.07

wk-NN 98.1 194.81 98.8 690.58

DT 97.2 3.3033 99.8 9.5367

SVM 97.8 280.82 97.9 379.61

80,807

k-NN 98.8 91.25 99.4 285.77

wk-NN 98.8 91.267 99.5 285.25

DT 98.9 2..2615 99.4 6.2339

SVM 97.9 227.28 98.1 125.25

57,280

k-NN 99.4 43.734 99.6 129.99

wk-NN 99.5 43.272 99.6 130.88

DT 99.4 1.7489 99.7 4.4535

SVM 99.2 30.239 99.3 37.894

The features are not scaled to the same fixed range, and the model is trained using
normally distributed instances. The results show that the decisions for all models are very
accurate except for the DT classifier. In addition, the processing time of the two nearest
neighbor models is significantly longer than that of all other models. Min-Max scaling
in the range [0, 1] is then used to solve the problem of different scales. Compared to the
previous results, it can be seen that feature scaling has no positive effect on any classifier.

Furthermore, the Min-Max scaling in the range [−1, 1] is used to avoid problems
caused by very long or very small derivatives, but does not affect the classification results.
Although the results showed very accurate models, there is still a problem with long
processing times. Finally, the TH scaling is used. All features are all scaled into the same
symmetrical range of ±0.7616. Compared to other scaling methods, the results show a
significant reduction in processing time, which is more than half that of the nearest neighbor
models. The results are presented in terms of Accuracy, processing time, FP, TPR and F1-
score. The results support the assumption that using the TH scaling to accelerate training
is reasonable. All models except SVM have high accuracy and F1-scores. The results are
given in Table 6.

Table 6. ACC and tp, F1-score, FP and TPR.

TH Min-Max[0,1] Min-Max[−1,1] Z-Score

ACC
[%]

tp
[s]

F1
[%] FP TPR ACC

[%]
tp
[s]

F1
[%] FP TPR ACC

[%]
tp
[s]

F1
[%] FP TPR ACC

[%]
tp
[s]

F1
[%] FP TPR

FNN
DT

SVM

99.36 5 98.89 49 0.989 99.53 11 99.33 47 0.989 99.31 12 99.04 49 0.983 99.43 12 99.17 37 0.986
99.40 2.5 99.18 36 0.992 99.47 2.8 99.12 38 0.984 99.41 6.3 99.14 41 0.985 98.89 2.2 99.15 41 0.985
99.10 26.9 98.69 64 0.980 99.15 36.9 98.93 63 0.981 99.17 43.4 98.89 65 0.989 99.22 36.3 98.88 62 0.981

k-NN 99.30 56.1 99.01 54 0.984 99.45 107.4 99.21 53 0.992 99.41 103.2 99.20 53 0.986 99.43 102.4 99.11 58 0.985
wk-NN 99.40 56.3 99.16 60 0.989 99.48 102.7 99.26 56 0.993 99.58 105.3 99.29 47 0.989 99.48 103.2 99.26 58 0.986

Overall, the results show that the TH scaling has a significant positive effect on
processing time at the expense of a slight decrease in accuracy and F1-score. Scaling the
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features within ±0.7616 ensures that each feature is equally important in the decision and
does not influence the others. The results also show that the damping strategy speeds up
model training. The results show that feature scaling does not affect the number of false
positive results. The percentage of FPs compared to the total number of instances varies
from 0.065%, when the Z-score standardization is used for scaling and FNN is the classifier,
to 0.11% when Min-Max normalization in the range [−1,1] is used for scaling and SVM
is the classifier. Low false positive values and high TPR for all the models indicate the
applicability of the proposed feature selection method. The wk-NN model showed the
highest classification accuracy in all cases except when the FNN is trained with the data
scaled in the range [−1,1]. In this case, there is a 0.05% accuracy difference between the
wk-NN model and feedforward neural network. In addition, the wk-NN model has the
best F1-score other than FNN trained on data scaled in the range [0,1].

To demonstrate the functionality of the XOR-based model, we ran experiments on
3-day records, containing 57,270, 57,280, and 58,300 instances. First, we divided each daily
record so that two-thirds of the instances are used to evaluate the models, and one-third
is used to calculate the sum of the detected decisions. According to the findings, it was
expected that classifiers detected network behavior equally. To investigate this expectation,
the fastest FNN and the most accurate wk-NN models’ decisions are compared (See Table 7).

Table 7. Detection of different decisions.

Instances Different Decisions Different Decisions [%]

57,270 1160 6.1
57,280 460 2.4
58,300 100 0.5

The results show that the number of conflicting decisions between the weighted k-NN
model and the feedforward neural network are independent of the number of instances.
Uncertainty in the results can be caused by data errors, residual errors in the model,
unidentified malicious attacks, etc. It should be noted that the XOR-based detector of
conflicting decisions cannot predict the specific conflict in the decision. It only provides
additional warnings to the authorities in such cases. The decision criteria can be chosen in
different ways depending on the sensitivity of the data, the technology used, legal practice,
etc. [66].

5. Conclusions

As technology advances, the number of cyber-attacks has increased exponentially. As
a result, detecting and predicting cyber-attacks is essential for any system that processes
sensitive data. Detecting network behavior anomalies is a relatively simple process of
determining what is “normal” and what is an “anomaly”. With the rapid growth of
computer networks and increasingly faster data processing, the classifiers need to improve
the predictability. The studies presented in this paper can serve as a reference for researchers
who want to use new methods for feature selection and scaling, or to choose the appropriate
algorithms based on their application scenarios and available resources.

The authors often use datasets that are simulations of the network traffic. In such
cases, the impact of duplicate and redundant records on model estimation can lead to low
processing power and reduce the model’s overall accuracy. The Kyoto 2006+ dataset is a
publicly available 10-year data set of real network traffic designed for anomaly detection.
The issue of the data set size is solved by feature selection and scaling. The nine numerical
features are scaled using TH, Min-Max[0,1] and Min-Max[−1,1] normalization and Z-score
standardization. Five ML-based binary classifiers, namely: FNN, k-NN, wk-NN, DT, and
SVM, are used to determine whether the network is working properly. The classifiers’
performance are compared using accuracy, processing time, number of false alarms, TPR,
and F1-score.
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This paper proposes an XOR-based model to detect conflicting decisions in abnormal
computer network behavior. The outputs of the fastest FNN and the most accurate wk-NN
are compared. It has been demonstrated that their decisions sometimes differ. The sum
of the non-zero bits determines the number of opposite conclusions after the classifiers’
results are XORred. The results show that dataset size, model accuracy, and processing
time do not affect the number of decisions.
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