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1. Introduction

Let G be a simple graph with n vertices and the adjacency matrix A(G). Let P.(G) =
det(xzI — A(G)) denote the characteristic polynomial of A(G), and let A1, Aa, ..., A, be
the eigenvalues of A(G). The energy of G is defined as F(G) = Z?zl |A;], as introduced
by Gutman in [1]. Let 0*(G) represent the set of all the distinct eigenvalues of A(G).

A balanced tree is an unweighted rooted tree such that all the vertices from the
same level have an equal degree, while a dendrimer is defined as a balanced tree whose
internal vertices all have the same degree. We will use d(l, k) to denote the dendrimer
which contains [ + 1 levels enumerated from 0 to [ with each internal vertex having a
degree of k. More about the various applications of dendrimers can be found, for example,
in [2,3].

In this paper, we investigate the spectral properties of balanced trees and dendrimers.
The two main results we obtain deal with the computation of E(d(l,k)) and are given
as follows:

Theorem 1. For any fized value of | > 1, we have

E(d(l,k)) ~2(k - 1Y% as k— 0.
Also, for any fized value of k > 3, we have

E(d(l, k) ~ pp(k —1)171/2 as | — o0,

where py, s the positive real number which represents the sum of the convergent positive
series

> fk—-1)7
j=0

defined by

s T
2 — | =2 —_— 219
CSC<2j+6> CSC(2j+2>7 | 7,
™ s
2 cot — 2cot 217.
“ <2j+6> © <2j+2>’ K

Theorem 2. For a given dendrimer d(l, k), where k > 3 and | > 2, we have

+0.5+\/§+ﬁ+\/5)’

fi=

E(d(L,k)) < (k— 1)/ (2 o1
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E(d(L,k)) > (k—1)7Y/2 (2 + ;—\&J .

The remainder of this paper is structured as follows. In Section 2 we prove a result
which yields the characteristic polynomials and spectra of balanced trees, improving the
previous result of Rojo and Soto [4]. We further focus on computing the characteristic
polynomials and spectra of dendrimers in Sections 3—4. The results in these sections
improve the previous results of Stevanovié¢ [5] and Bokhary and Tabassum [6]. In Section 5
we deal with the computation of the energy of dendrimers and use the results from
Sections 3—4 in order to prove the two main theorems, namely Theorem 1 and Theorem 2.

2. Characteristic polynomials and eigenvalues of balanced trees

Let T be a balanced tree. First, we can uniquely represent T up to isomorphism by
assigning to it a characteristic tuple of positive integers Cr = (¢, ca, . .., ¢;). The number
of elements in this tuple dictates how many internal levels T has. We will enumerate the
tree levels from 0 to [, where the levels 0,1,...,1 — 1 are internal, while the level [
contains the leaves. In the tuple Cr, the element c¢; describes the number of children of
each vertex in level j — 1. In other words, c¢; represents the degree of the root of T, while
¢j + 1 determines the degree of each vertex in level j — 1, for all 2 < j <.

Furthermore, we are going to use n; to denote the total number of vertices in level j,
for 0 < j < [. Here we obviously have that ngp =1 and n; = n;_1c; forall 1 < j <.
Also, let np = Zé‘:o n; so that nr represents the total number of vertices in 7'. For
convenience, we will define n_; = 0.

The following theorem describes the characteristic polynomials of arbitrary balanced
trees.

Theorem 3. Let T be a balanced tree such that its characteristic tuple equals Cp =
(c1,¢2,...,¢). If we define a sequence of polynomials Qo(x), Q1(x),...,Qr+1(x) by

Qo(z) =1,
Qi(r) ==,
Qjt+2(z) =2 Qjq1(7) — c1—; Qj(x) forall 0<j<I1-1,
then
I+1
PAT) = [T @)ty ers s
j=1

Before we prove the theorem, we will make certain preliminary definitions which will
aid us in creating a more concise proof. For two given positive integers o and [ such that
B | a, we will use Bo g = (bij)axs € R**# to denote the binary matrix whose rows and
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columns are enumerated from 0 to a — 1 and 0 to 8 — 1 respectively, such that b;; = 1

if and only if L%J = j. For example, we have

We can concisely express the adjacency matrix of T with the help of these matrices:

Together with P,.(T) = det(zI,, —

O OOO =

H e _EREOOOoOO

xI,,

T
ny,ni—1

(6]

0

Sy
©
w
|
OO ODODOO -

[ o an,mf1
T
ny,N—1 O
T
O Bnl—lfﬂl—z
0)

7Bnl7nl71
xI,, |

_BT

ni—1,N1—2

0

We will compute P,(T) from Eq. (1).

OO0 R OOO
RO OOOOoOOoO

o

Bnl—17nl—2

o

(0]

7Bnl—17"l—2

zI,, ,

0

Bios

A(T)), this leads us to

OO OO OO OoOO
OO OO OO, OO

x1,,

T
n1,no0

OO OHRHLROOOO
OO OOODOODOOoO O
HFRFOOOoOOoOoOoOOoOOo

_Bnl,no

x I,

Proof of Theorem 3. By multiplying the (j + 1)-th block row in Eq. (1) with @Q,(«), for
all 1 < j <, we obtain
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xQO(z)Im 7Q0(x)Bnl7nl—l o
7Q1( ) ny,my_1 le(x)Inzf1 7Q1(gj)anf1ymfz
B O 7Q2( ) Ni—1,N1—2 xQQ(z)Inl—Z
The determinant on the right-hand side can easily be calculated by applying the Gaussian
elimination on the given block matrix. If we multiply the first block row by B,:Z ni_, tO
the left and then add the obtained result to the second row, we get
l
Po(T) ][] Qi)™ =
j=1
zQo(x)ln,  —Qo(x)Bn, s o T o
O QQ(‘T)ITLL—1 _Ql(‘r)Bnl—17nL—2
- (0] _Q2( ) ni_1,m_2 xQQ(J;)Im—z
0 o 0 2 Q)L
We can then multiply the second block row by Bgl L, bo the left and add the result

to the third row, and so on and so forth, until we reach

l
DTS

j=

—

Ql(x)Inz _Qo(m)Bnhnl—l o o
o Q2(2)1,,_, _Ql(‘r)Bnl—lynl—Z o
“| o 6] Qs(2)I,,_, 6] ’
o o o e Qe (o)Iy,

which finally gives us

I+1

l
P.(T) H Yr-i = H Q Y-
j=1

By taking into consideration that n_; = 0, we get that for any complex number z which
is not a root of any of the polynomials Q1(x), Q2(x),...,Q:(z), the following equality
must hold:
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+1

P.T) = ] Qj(z)m-smms . 2)

Jj=1

Since each polynomial Q;(x) is of degree j, for all 1 < j <[, we conclude that there are
infinitely many complex numbers which are not a root of any of these polynomials. From
Eq. (2), we see that the polynomials P,(T") and ]_[;111
infinitely many points, which implies that these two polynomials are identical. 0O

Q;(z)™+1= =™ must be equal in
By Theorem 3, P,(T) is a product of those Q;(x) for which n;41_; —n;_; is positive.
This implies the following result.

Theorem 4. Let ® be the set of positive integers 1 < j <1+ 1 such that ngp1—; > n—j.
Then we have

o*(T) = | J {z: Qj(z) = 0}.

je@

Remark 5. The condition nj41—; > n—; is always satisfied for j = { + 1. For j <[, it
becomes equivalent to ¢;41—; # 1.

The use of Theorem 3 is exemplified in the following section on the case of dendrimers.
3. Characteristic polynomials of dendrimers

If we view a dendrimer d(l, k) as a balanced tree, we see that its characteristic tuple
equals (k,k — 1,k —1,... k —1). We can now apply Theorem 3 in order to compute the

!l — 1 times
characteristic polynomial of d(I, k).

Theorem 6. Let Wi o(x, k), Wi1(x,k),...,Wiit1(x, k) be a sequence of polynomials de-
fined in the following manner

Wio(z, k) =1,

Wii(z, k) =, 3)

Wiz, k) =aWij—i(z, k) — (k= 1) Wi j_o(z, k) forall 2 <j <1,
Wigsa(z, k) = Wi (x, k) — kW1 (x, k).

Then, for allk > 2 and 1> 1,

-1
Po(d(l, k) = Wi (2, F) Wi (a, k) T Wi (a, o) R(k=2) (k=)' 7177 (4)

j=1
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Proof. Given the fact that ¢c; = k and ¢; = k — 1 for all 2 < j <[, Theorem 3 gives us

I+1
Po(T) = [T Wi s

j=1

Since n_y = 0,n9p = 1 and n; = k(k —1)77! for all 1 < j < I, we have ng — n_; =
Lni—no=k—1and nji1 —nj; = k(k—1)7 —k(k—1)7"! for all 1 < j <[ — 1. This
leads us to

-1
Po(T) = Wigpa(x, k)" " Wy (z, k)™ =m0 H Wi j (2, k)=
j=1
-1 - .
= Wiagr (2, )Wy (w, k)1 [ Wi (a, k)R k(=2
j=1
-1 o
= Wi (, K)Waa (2, k)1 [T W (o ) 002 g

j=1

It is relatively easy to use Theorem 6 to obtain the characteristic polynomial of the
dendrimer d(l, k), where k > 2 can be treated as an integer parameter, while [ > 1 is
some fixed and preferably small, positive integer. For example, if we put [ = 1, we will
get a sequence of polynomials

W1 0(,@7]{3) = 17

)

W1 1($7I€) =T,

)

Wig(x, k) = 2% —k,
which quickly gives us the characteristic polynomial
P.(d(1,k)) = (2 — k)z"~1. (5)

Similarly, by setting I = 2 we obtain the sequence of polynomials

which leads to the characteristic polynomial
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Po(d(2,k)) = 2% — (2k — 1)z][2? — (k — 1)]F1ak(E=2)
xk2,2k+1(x2 —k4+ 1)k71(x2 — 2k + 1)

_ I(k71)2(x2 — k4 l)kfl(lﬂ —2k+1). (6)

Further for [ = 3 we get the sequence of polynomials

Wiz, k) =1,

Ws1(z, k) =z,

Wia(z, k) = 2% — (k- 1),

Wi 3(w, k) = 2° — (2k — 2)x,

Wi a(w, k) = 2* — (3k — 2)a® + k(k — 1)

which yields the characteristic polynomial

P(d(3,k)) = [z* — (3k — 2)2? + k(k — 1)][z® — (2k — 2)x]* 1
[12 (k )] (k— Q)wk(k 2)(k—1)
= [z — 3k — 2)2® + k(k — 1)](2* — 2k +2)F !
(22 — k 4 1)k0=2) k(=) (b= 1)+ (k=1)

= [2* — 3k — 2)2? + k(k — 1)](2® — 2k + 2)* 1

(x2 —k+ 1)k(k72)x(k71)3.

Remark 7. Note that [6, Theorem 3.5] gives a slightly inaccurate expression for
P,(d(3,k)), in which the correct factor z* — (3k — 2)2% + k(k — 1) above is replaced
by an incorrect factor x* — 2(k + 1)z? + 4(k — 1).

4. Eigenvalues of dendrimers

Theorem 6 can be used to determine the eigenvalues of the given dendrimer d(I, k).
If k£ > 2, then a real number belongs to o*(d(l, k)) if and only if it represents a root of
some polynomial from the sequence Wy 1(z, k), Wi 2(x, k), ..., Wii41(x, k), given the fact
that ¢; > 1 for all 1 < j <. A special case occurs when k = 2, since this would lead
to ca = ¢3 = --- = ¢ = 1. In this situation, we would have that o*(d(l, k)) is composed
solely of real numbers which are a root of Wy ;41 (2, k) or Wi (x, k).

Theorem 8. For any k> 3 andl > 1, we have

I+1
o*(d(l,k)) = U {z: W (x, k) =0}

j=1
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If k=2 andl > 1, then we get

c*(d(1,2)) = {x: Wi 41(z, k) =0V Wy (z, k) = 0}.

A natural question is whether these results can be made explicit. The answer to this
question is affirmative, as previously shown by one of the present authors in [5]. Let

Eo(x,a), E1(x,a), Ex(x,a),. .. be a sequence of polynomials defined via the recurrence
relation
E() (37, CL) =1 5
El(xva) =T, (7)
Ej(z,a) =z E;_1(z,a) —a Ej_2(z,a) for all j > 2.

We shall call these polynomials the Dickson polynomials of the second kind, as done
so in [7, pp. 9-10]. By comparing Egs. (7) and (3), we see that the polynomi-
als Wio(z, k), Wya(z,k),..., Wi (z,k) actually represent the Dickson polynomials of
the second kind Fy(z,k — 1), Fy(z,k — 1),..., Ej(z,k — 1), respectively. This means

that the polynomial W ;(x, k) must have j distinct simple roots 2v/k — 1 cos (J%W) ,

2vk — 1 cos (]%Tl’) o 20k —1cos (ﬁﬂ), for each 0 < j < I (see, for example, [7,
pp- 9-10]).

Note that the roots of W ;41 (z, k) cannot be found as easily, given the fact that this
polynomial is not a Dickson polynomial of the second kind, unlike all of its predecessors.
This irregularity occurs due to the fact that Wj;y1(z, k) is defined via a recurrence
relation which is slightly different from all of the previous ones.

By taking these facts into consideration, we reach the following theorem.

Theorem 9. For any k > 3 and | > 1, we have

o (d(l,k)) = {Nﬁcos (j h

w):lghgjgl}
+1

U {xeR: W t1(x, k) =0}.

On the other hand, if k =2 and l > 1, then

h
* = — 1 <h< .
o*(d(l,2)) {QCOS (21+27r> 1_h_2l+1}

Proof. The dendrimer d(I,2) is just a path graph composed of 2]+ 1 vertices. It is known
(see, for example, [8, pp. 18]) that the spectrum of this graph is composed of the real

] ! o 2 (2041
numbers 2 cos (—2l+27r) ,2cos (—2l+27r) ,...,2CO08 (21+27T)'
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For k > 3, from W, ;(z,k) = E;(xz,k — 1) for 0 < j <, we have
: h
U{zeR W;( )—O}—{2\/k—1cos<j+—17r):lghgjgl}. o (8)

Despite the fact that the roots of W; ;41 (z, k) cannot explicitly be found, a relatively
good approximation can be made. Moreover, Wi ;41 (z, k) represents a Geronimus poly-
nomial of degree | + 1 (see, for example, [9]). This fact can be shown if we notice that

Wiz, k) = aWy(x, k) — kWi —1(x, k)
= {EEl(l',k — ].) — (k — ].) Elfl(fl',k — 1) — Elfl((E,k — ].)
=Ea(z,k—1) - B (v, k- 1),
for each [ > 1.

For a fixed parameter a € R, we will use G;(z, a) to denote the sequence of Geronimus
polynomials defined via

Go(z,a) =1,

Gi(z,a) =,

Gy(z,a) = 2° —a,

Gj(z,a) =2Gj_1(z,a) — (a — 1)Gj_2(z, ¢) forall j > 3.

It is easily proven via mathematical induction that G;(z,a) = E;(x,a—1)—E;_2(z,a—1)
for each j > 2, which ultimately shows that Wj ;41(z, k) = G41(z, k). This observation
leads to the following lemma.

Lemma 10. For k > 3, the polynomial W 41 (x, k) has l+1 simple real roots determined
by the set

{:I:al, :|:Oé2, ceey ial_(l+1)/2j}
if L+ 1 is even, or
{£ai, tag, ..., fa|q41)/2)} U {0}

if I +1 is odd, where the numbers a1, az, ..., q11)/2) form a strictly decreasing positive
sequence which satisfies

i — 0.5 i + 0.5
2vV'k — 1 cos <]l—|—2 7T) > a; > 2vk — 1cos (jl—:-Q 7r>

for each j € {1,2,3,...,[(Il+1)/2]}.
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Proof. Given the fact that Wy 41(z, k) = Gi41(z, k), we know from [9] that for £ > 3
the polynomial W; ;41 (z, k) must have [ + 1 distinct real roots aq, e, . . ., ay41 such that

2vk — 1cos <jl_+02'5ﬂ-> > o > 2vVk — 1cos (j[:o;ﬂ) (9)

for each j € {1,2,3,...,1+1}. Since the cosine is a strictly decreasing function on [0, 7],
Eq. (9) immediately shows that

a1 > Qg >0Q3 > >0 > 0y -

Also, due to the fact that the cosine takes positive values on [0,7/2) and negative values
on (m/2, 7], we obtain

ap > ag > > aqy2 > 0> aggyoe > > > o (10)
if { +1 is even, and
Oq>042>"'>Oél/2>0>Ozl/2+2>"'>04l>0q+1 (11)

if I +1 is odd.

It is trivial to prove that G;(x,k) is an even polynomial for each even j and an odd
polynomial for each odd j. If [ + 1 is even, this observation and Eq. (10) together give
that ay42—; = —cyj for each 1 < j < (1+1)/2. This implies that the roots of Wy ;41 (x, k)
are described via set {£aq, *ao, ..., £a|g41)/2)}, where ag > ap > -+ > ajqq1y/2) > 0.

If I+ 1 is odd, then 0 must be a root of Wy ;41 (x, k), which implies a; /511 = 0. On the
other hand, Eq. (11) gives ay19_; = —a; for each 1 < j <[/2. We conclude that in this
case the roots of Wy ;41 (x, k) can be described by the set {+ay, *as, ..., £a|q41)/2} U
{0}, where ay > ap > -+ > a|(141)/2) > 0. O

Lemma 10 shall prove to be quite useful while approximating the energy of dendrimers
in the following section.

5. Energy of dendrimers

Here we discuss the computation of the energy of dendrimers. Due to the fact that
the roots of the Geronimus polynomials cannot explicitly be found, we are unable to
obtain an exact expression for the energy of a dendrimer d(I, k) whenever k > 3. Instead,
we compute a reasonable approximation of E(d(l,k)) that covers all of the dendrimers
whenever k > 3 and [ > 1, together with the exact value of E(d(l,2)) for each | > 1.
Afterwards, we inspect the asymptotic behavior of E(d(l, k)) when analyzed as a function
of two variables [ € N and k € N \ {1,2}. In the end, we give another approximative
formula of E(d(l,k)) when k > 3, which reflects the asymptotic behavior of the function.
To begin with, we state the following theorem:
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Theorem 11. For any k > 3, the energy of the dendrimer d(l, k) can be approxzimated in

the following manner:

-1

B(d(l, k) <Y filk = 1)V ok — 1)1/2, (12)
j=0
-1

E(d(l k) > > fi(k— 1) —2.4(k —1)1/2, (13)
j=0

where

s T
2 -2 —_ 217
CSC<2j+6> CSC(2j+2>7 | 7,
™ s
2cot | —— ) —2cot | ——— 2179.
“ <2j+6> “ <2j+2>’ K

Also, the energy of the dendrimer d(l,2) can be computed via:

B(d(1,2)) =2 <cot <ﬁ) - 1> . (14)

In order to make the proof of Theorem 11 easier to follow, we shall introduce and
prove two auxiliary lemmas. First of all, let W(W; ;(x,k)) denote the sum of absolute

fi=

values of all the roots of the polynomial W, ;(z, k).

Lemma 12. For each 0 < j <, we have

YWy (k) =2vk — 1 (cot (2]”?) - 1)

if j is odd, and

2j + 2

T(Wy (2, k) = 2vEk — 1 (csc <L> - 1>
if j s even.

Proof. The equality is directly proven for j = 0. The polynomial W o(x, k) = 1 is of
degree 0 and has no roots, hence U(W; o(x, k)) = 0, while the according right-hand side

2vk —1 (csc (%) - 1) also obviously equals 0.
Suppose 1 < j < [. We know that the roots of the polynomial W; ;(x, k) must be

2v/k — 1cos (]%T() ,2vk — 1cos (]%Tl’) ooy 28k — 1cos (Jjﬁﬂ') Hence
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J
h
Wi i(z, k) 2vk — 1cos
EWasl P (J +1 )‘
Vi -1 j h
=2vk—1 cos | ——m||.
2| (757)|
Since cos ( +17T) >0forl < h < % and cos (j%w) = —cos (J—;_-l‘rl ) for all
olop < 7, we can rewrite the last expression as
1) i
U(Wi(x, k) =4Vk—1)  cos (— )
P j+1
Let us denote ¢ = e71. It is convenient to replace cos (ﬁ ) with & . This gives

YW (2 k) = 4V~ ZC”C '

14]
=2vVE—1> ("+¢"
h=1
14]
=2Vk—1 o1
h=—1%]

Since ¢ # 1, we can use the standard formula for summing a geometric progression in
order to get

214
(Wi (2, k) = 2Vk — 1 ZCH 1

<2L L+l
¢lz J 1)

2\/k_<@ {141 _ CLJ 1)

N

(e - Cﬂ%&

N =

By taking into consideration that
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(cts+ —¢14) (é _ 1) T IR tIRS S EIE

= 2cos ( L%J 77) — 2cos (L%J +17T>
Jj+1 J+1

and (¢ —1) (% - 1) =2- (CJr %) =2—2cos (H—l ) we conclude that

2 cos (jLJrJl ) 2COS(LJJ+T17T>
V(W (x, k) =2vVk—1 -1
2 — 2cos (]Jrl )
LZ] [3]+1
cos —cos | =2 —
e (e () —eos (M)

1—cos< 1 )
L%J+17T g

If j is odd, then | %] = 51 and ] 5, which transforms the given expression into

V(W (x, k) =2vVk—1 -1
1 —cos (]%71’)
2 s
=2Vk -1 Sm(m 5) —1)
2 T
2sin (2j+2>
sin (ﬁ)
=2Vk -1 5 -1
2sin 2]‘12)
2sin (2]:_2) cos (2112>
=2Vk -1 . -1
2sin (2].12)
T
=2Vk -1 t| —— | —1
(et (5752) 1)
If j is even, then L%J = ; as well as cos (L%_Jlrlﬂ) = —cos (JL_%_Jl 7r) which gives

U( Wi (e, k) = 2VE 1
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2V@T_T(%c(2j12)1>. O

Lemma 13. Suppose k > 3. For an even | > 2, the value (W, 11(x,k)) can be approwxi-

mated via
2VEk (cot (2l ) - 2.2) < U (Wiigi(x, k) <2vVk—1 cot <21 n 4)

while for an odd | > 1, the following approximation can be made:

2VEk -1 (CsC ( 4) - 2.2> <W(Wiiia(e,k) <2VE =1 ese (21 + 4)

20+
Proof. Lemma 10 directly gives us
L) L)

4¢Ei?f§;<ms(z+05 )<<@amlH@:m)<4vr__‘§:<ms<h 0-5 ).

+ 2 P 142

We will denote ( = e2i¥3 . From

<h —0.5 ) <2h—1 + (—(Qh—l)
(¢0)] ™

[+2 2 ’
h+0.5 C2h+1 4 47(2h+1)
<z+2”)_ 2 ’

we obtain

L)

U (W ig1(z, k) > 2vVEk —1 Z (C2h+1 4 C—(2h+1)) )
h=1
L)

U(Wyiga(z, k) < 2VE Z (<2h Ly (k- 1))

h=1

Since ¢ # 1, we can apply the standard formula for summing a geometric progression in
order to get

U(Wigsr (o)) < 2VF—1 (725 (142 ¢h o (LHH2)

1— i
=ovk—L1¢AE) e
N e

—215h) 2l

<12
=2vk -1 -~
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(2B - @1 - ¢?)
(1-¢)1-¢?)
(U1 g =2l )y (2L 4L 4 2l -
2—(C2+(?)

21 —1 215 +1
2 cos (ﬂ”) —2cos (W”)
2 — 2cos <LT{')
42
20+ 4 20+ 4
=2Vk —1

1 )
]._ —T7
€08 (l+2 >

=2vk—1

=2vk—1

as well as

I+1

>k —1 (6*1*2LTJ (1 +CC 4+t o+ C4L’+71J+2) —(C+ Cfl))

1 — a5+

e e <—1>>

Gl IR B

(
(e
(
(

—(¢C+ <1)>
(R Tt S0 [ Sk 0.
=)=

S S el (Sl o S S|
2-(C+¢?)

214 41 2141 4+3
2COS <|‘2J—|—ﬂ—> — QCOS (wﬂ-

- (<+<‘1)>

—(C+ C‘l)>

204+ 4 20+ 4 > -
=2Vk -1 — 2cos
2 — 2cos Lw 2 +4
[+2
2|4 +1 242 +3
cos ST T cos ST ™ 77
>2vk —1 1 _2COS<2Z—|—4>
l1—cos|——m
[+2
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Case 2 |I:  We have |2 | = L which allows us to conclude

L
27

COS ( l _ 1 7T) — COS (H—Iﬂ')
2N+ 4 N+ 4
U(Wigsr (k) < 2VE — 1 + +

1
1— -
cos(l+27r>
-1 =« l+1 «
os\i727 ) "2 e
=2Vk -1 1
1— -
Cos<l+27r>
i ( 3 7r) i ( 1 7T>
m({——- =) —sin{ ——-—
PN ] [+2 2 [+2 2
.2 U
2sin <—21+4)

28111( il )cos( 2m )
P 20+ 4 20+ 4

cos( 27 >
PN — 20+ 4
. T

Sm<21+4>

cos( il )

< oET1 20+ 4
sin il

(2l+4)
T

=2Vk -1 C0t<2l+4>

along with

U(Wyp1(x, k) >

COS(Z—’—1 ) COS(2Z+3 >

— T | — — T

20 +4 20+ 4 1
k—1 —2COS(2Z—_|_47T)

> 2

2cos(l+1 )
™
_ovEoq | \2A+4

179
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=nk—-1 ;
)

7r
> 2\//€ —1 (CSC (m) — 22) .
Case 211: We have |52 | = B1 thus obtaining

COS ( l ) COS ( l L 2 )
—7 | - —7
214 214

(W (2, k) < 2VE — 1 + : +

1 — cos (—w)

+

s T
2sin< )cos( )

2sin? [ =
s (575 )

=2vk -1 cot( lw )

20+ 4
T
2Vk —1
< CSC<2l+4)
as well as
\IJ(VVl,H-l(mvk)) >
cos,(”%)_ <_l+4)
W 20+ 4 20 + 4 _ . 1
( ) 21+ 4
1—cos| ——m
I+
cos<l+4 )
— T
=2Vk -1 2844 2COS<L>
,2< T > 20+ 4
2sin



I. Damnjanovié et al. / Linear Algebra and its Applications 657 (2023) 163-196 181

. 2 )
s1n<7r
=2Vk -1 ¢2COS<LW>

2sin (L> cos <L>
1
=2Vk -1 2l +4 2l +4 —2cos<—7r)

cos< il )
20 +4 1
k - cos(21+477)

1 —cos <L>
1 20+ 4 1
=2vk—1 - —2cos | ——
' sin T sin | ——— - <2l + 471-)
20+4 2044

T
2sin? [ ——
41+ 8 1
— —2cos | ——
. T ™ 20+ 4
2sin cos
47+ 8

41+ 8

s ™ s
= 2\/]{3* 1 (CSC (m) — tan (m) — 2cos <m>) .

To complete the proof, it is sufficient to show that

T i
T ) bocos () <22
tan (4l+8> + C°S<2z+4) =

for all I > 1. For | = 1, we have

T
=2vk -1
csc( T4

[\

tan(l%)+2(:os<%):(27\/§)+2o§:2<2.2.

For [ > 2, we get tan (ﬁ) < tan (171-—6> =V4+2/2-v2-1<0.2. Together with

2 cos (ﬁ) < 2, this gives the desired result. O

With the direct help of Lemma 12 and Lemma 13, we are able to formulate the
following proof.

Proof of Theorem 11. First of all, it is easy to prove Eq. (14) by taking into consideration
Theorem 9. It immediately follows that the energy of d(l,2) must be equal to the sum
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l
h
E(d(1,2)) =2 h; 2 cos <m7r>

Thankfully, Lemma 12 has already shown us how this exact sum can be computed in
an elegant way. In the remainder of the proof we will suppose that £ > 3 and focus on
proving Eq. (12) and Eq. (13).

From Eq. (4), we easily obtain

B(d(L, k) = U(Wii1 (2, k) + (k — 1) (Wia(a, k)
-1
+ 3 k(k = 2)(k = 1) U (W (o, k).

The expression for E(d(l,k)) can be rewritten in the following way:

E(d( k) = YW (2, k) + (k= )W (Wi(z, k)

-1
+) (k=12 = 1)k — D) I U(Wj(x, k)
= U(Wiit1(2, k) + (k = 1)@ (Wi, (2, k)
_ -1
+ 3 (k= DM IR W (k) = Y (k= D)W (@, k)
- =

= V(Wi (2, k) + (k = D)W (Wi (z, k)
l
+Z ) I (W gy (2, k) Z ) I U(W (k)

Jj=2

thus giving

(k= 1) W (Wi (2, k).

-

(k= 1)U (Wi jpa(z, k)

-

<
Il
o

<
||
N

E(d(l, k) =
We know that ¥(W;1(z,k)) = 0 since W; 1(x, k) = z, which means that

E(d(l, k) = ) (k= 1) W(Wy e (z, k) + (k= D)WWy (z, k)

-

<
Il
—

(k= 1)U (W1 (x, k)

M-

<
||
N

l l
Z — D)Wy, k) = Y (k=17 0(Wy (2, k).

<.
[\~]
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Also, (W, o(z, k)) = 0, which implies

l
(k= D)W (W (k) = Y (k= 1)U (W1 (2, k)
Jj=2

(k= 1) (Wil )

M-

BE(d(L,k)) =

-
Il
-

(k= 1)U (W j1(x, k)

'M~

=D (k=)W (2, k) —

Jj=1 Jj=1

from which we get
l
= (k= D! [W(Wy i (k) = U(Wiga (2, k)]

Jj=1

The implementation of Lemma 12 gives

YW g (2, k) =W (W (k) =

3 o (59 ) 0T (7))

2 (e (7 ) 1) -2 (e ( ) . ot

[ o) (3)):
oo 2o (5)).

for each 1 < j <[ — 1, which further implies

N

s
25

Zf] Lk = D)V [ (Wi (2, 7)) — U (Wi (2, k)

_ Zf DY 4 [ Wi (2, k) = U (Wi (2, k)]

Lemma 13 helps us to approximate the final term W(W; ;41 (x, k)) — U (Wy -1 (2, k)). If
is odd, then
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V(Wi (2, k) = O(Wi—1(z, k) <

<2Vk —1 csc <2l7rﬂ) — k-1 (csc (E) — 1)

T T
=2Vk (CSC(2Z+4)—CSC(21>>+2 k—1
= fralk= 1)V 20k — 1)1

and

\I/(Wl l+1($, k)) — \II(WZ 171(‘767 k)) >

s )

o VBT (s (57 ) —22) —2vA T (e (%) -1)
(> (&

20 +4) e (21)) —2AVE
= fiii(k — 1Y% —2.4(k — 1)"/2.

If [ is even, then we similarly obtain
Y(Wipsr(@, k) = U (Wig-a(z, k) <

<2VET ot (57 ) -2V T (cot (5) 1)

=2vk—1 (cot (21 ) cot (2l)> +2vE—1

= fia(b =112+ 2(k = 1)1/
and

V(Wi (@, k) = ¥ (Wig-a(z, k) >
T (e () ~22) oV (e () )
(s (s2) - () - 20vi

= fii(k—1D)Y2 —2.4(k —1)Y/2.

Taking everything into consideration, we get the approximations

E(d(l,k) <> filk =)' 4 fiy (k= 1)V 4 2(k — 1)/
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-1
= filk =17V po(k — 1)!/?
j=0

and

|
N

E(d(L,E) >y fi(k—=D)"7V270 4 (k- 1)Y2 - 24k — 1)Y/?
J

I
=

|
—

filk = 1)I7Y270 2 4(k — 1)1/2
=0

.

which complete the proof. O

Theorem 11 provides a way to approximate the energy of a dendrimer d(l, k) via two
expressions that resemble polynomials. To be more precise, these expressions represent
a linear combination of the power terms (k — l)h_l/ 2 h € N, where the corresponding
coefficients depend solely on [, not k. This makes it easier to analyze the asymptotic
properties of E(d(l,k)), leading us to the first of our two main theorems:
Theorem 1. For any fized value of l > 1, we have

E(d(l,k)) ~2(k—1)"Y2  as k— 0. (15)

Also, for any fized value of k > 3, we have

E(d(l, k) ~ pr(k—1)Y2 0 as 1= oo, (16)

where py, is the positive real number which represents the sum of the convergent positive
series

ij(k -1~

defined by

2 csc ,W —2csc _7T , 217,
o= 27 +6 2542
=

200t< 2¢t7.

2 cot - ,
2j+6 2j +2

In order to make the proof of Theorem 1 easier to follow, we are going to need the
following auxiliary lemma:
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Lemma 14. If (a;) e, and (b;)jen, are real sequences such that

T T
aj = 2csc - — 2csc - ,
2j+6 2j+2
bj = 2cot ,ﬂ— — 2cot .7T s
2746 2j+2

8
for each j € Ng, then both of these sequences converge to —. Also, (a;);eN, s strictly
T

increasing, while (bj)jen, s strictly decreasing.

Proof. We have

T T
a; = 2csc - —2csc | ——
2j+6 2j +2
) sin (2]7’?) — sin (ﬁ)
sin (2]%) sin (2]—’;6)
Qbm(—;—) NE=

(o752 o (750)

. s G+2)m
A S (2(j+1><j+3 ) oS (2(a+1) a+3>)

sin (2a+2) sin (2 )

=2

2. 512 346 sin (m) - cos (ﬂ)
T sin (ﬁ) sin (ﬁ) GG 20+ +3)
8 3w 3w SO (2(j+17§(j+3)> . ( R )
sin (ﬁ) sin (—2;;6) m 20+10G+3)

By using the well known properties of limits together with the famous formula
sin

lim = 1, it becomes obvious that lim a; = —. Similarly, we obtain
z—0 X j—oo e

b; = 2cot _7T — 2cot ,W
2j+6 2742
) sin (ﬁ) cos (ﬁ) — sin (ﬁ) cos (ﬁ)
sin (ﬁ) sin (ﬁ)
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3 s ™
S (m - m)
3 us : ™
S (m) S (m)

sin ((j+1)7r(j+3)>

=2

=2
sin (2]%) sin (ﬁ)
P N7 R (i)
T osin(3%5) sin(sEg) GG
. § ) 2;12 ) 2j7-r-6 _ sin ((j+1)(j+3)>
T sin (2]%) sin (2j+6) G+DG+3)

which implies lim b; = —.
j—o0 T

Let us define the function y;(x) = csc (E) on [2,400). This function is obviously
T
twice differentiable everywhere. We know that

s m s s
aj —aj_1 = 2csc 5746, c 212 — 2csc 2 +4 +2csc %5

=2(y1(25 +6) —y1(2) +4)) — 2(y1(25 +2) — v1(25))

for each 7 > 1. Since the function y; is differentiable everywhere, we can use the mean
value theorem to get

aj —aj—1=2((2] +6) — (2§ +4))y1(&1) — 2((2) +2) — 2j)y; (&2)
= 4y (&) — 4y1(&2)
for some & € (25 + 4,25+ 6), & € (2,25 +2). Since £ > & > 2, in order to prove that

(aj)jen, is strictly increasing, it is sufficient to show that y{(x) is positive on (2, +00).
We compute

g 2y =) (e (),

which further gives

o= (5 (D)oo () ¢ T (2o () e (2) o (2
2 (D)oo (2 4 5 (S (Do () o (3

|
|
o
2]
o
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tee(3) (e (D)) ()
B (D)o () 5 o (7)ot (7)o (2)
% csc (g) (—2xcot (%) + 7 cot? (g) + mesc? (g)) .

Here, it is possible to conclude that for x € (2, 4+00)

yi(z) >0 < —2zcot (I) + 7 cot? (E) + 7 csc? (E> >0
T T T

2(TY fesc? (T) > 2 cot (T
<= cot + csc > cot
T T ™ T

)
o ot (2) 1 Z (7))
oy ()on()

Hence, in order to prove that y{(z) > 0 for all x € (2,4+00), it is sufficient to show that

2sin # cos 0
cos?(0) +1 > ZOMICOSY for each 6 € (0,7/2). However, we know that

0
2si 3
cos? 0+ 1 > 7811&2(:%9
<:>0082072cos9+1>w7200s0
9 sin 0
= (cos@ —1)° > 2cosb - 7 -1,

in 6
which obviously must hold for all 6 € (0, 7/2), since (cos@ —1)? > 0, while % -1<0
due to 0 < sinf < 6, which is known to hold on (0,7/2).

Now we define the function ys(z) = cot (Z) on [2,+00). This function is also twice
x

differentiable everywhere. We have

s i T s
b: —b:_1 =2cot — 2cot — 2cot 2cot | —
57 0m1= 200 <2j+6> € <2j+2> € (2‘7‘+4>+ € <2j>

=2(y2(25 +6) — y2(2j +4)) — 2(y2(2) + 2) — y2(25))

for each j > 1. Due to the differentiability of ¢, on its entire domain, we can implement
the mean value theorem to obtain

bj —bj—1=2((2j +6) — (27 +4))ya(m) — 2((25 + 2) — 2/)y5(12)
= dys(m) — 4y5(n2)
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for some n1 € (25 4+ 4,25 + 6), n2 € (24,25 + 2). Because of n; > 12 > 2, in order to
prove that (b;);en, is strictly decreasing, it is sufficient to show that y5 () is negative
n (2,400). We compute

along with

b0 = (53) o () +2 oo (D) o (5)
= — — 2 — —
Y5 () (a:2> ese” ( ~ + s ese(—)esc(~
2 L qm ™ m ™ U T
= ——3 CscC <—) +2 —csc (—) . (—2 csc( )cot (—))
x z z x x x x
= 14(38(32 (z) <f2a:+27rcot (E>) .
x T x

Thus, for « € (2,+00) we have

yh () <0 < —2x + 2mcot (g) <0

s T
<= —cot(—) <1
T T

™ ™
<— — < tan (—)
T T

However, it is known that the inequality tan 6 > 6 holds on (0,7/2), which proves that
the sequence (b)) cn, must be strictly decreasing. O

We are now in the position to prove Theorem 1 by extensively relying on the sequences
(a;)jeN, and (bj)jen, defined in Lemma 14, as well their properties which we have shown.

Proof of Theorem 1. First of all, we are going to prove Eq. (15). Directly from Theo-
rem 11, we obtain:

( 11/2 ij — D)7 +2(k—1)7 0D, (17)
as well as
-1
% > Z fi(k — )7 —2.4(k - 1)_(l_1) ) (18)
§=0

Provided I > 2, it is clear that when the [ variable is fixed and k¥ — oo, then both the
right-hand side in Eq. (17) and the right-hand side in Eq. (18) tend to fy. By the squeeze
theorem, we get that
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(X))

A e o

Taking into consideration that fo = a9 = 2, Eq. (15) is proven for [ > 2. For | = 1, the
formula needs to be proven directly. From Eq. (5) we see that E(d(1,k)) = 2v/k. Having
this in mind, it is obvious that

o ELE)
e =

which completes the proof of Eq. (15).
The next step is to prove that the positive series

> filk—1)7
=0

8
is convergent. From Lemma 14, it is clear that all the a; must be smaller than —, while
7r

8

all the b; must be greater than —. Given the fact that f; = a; when j is even and f; = b;
m

when j is odd, it is easy to establish that

sup f; = f1
Jj€Np

J
In other words, if we denote Fj = > fyn(k —1)~", then
h=0

J
F; <> Alk—=1)"
h=0

for each j € Ny. Subsequently,

J
F;<fd (k=1)7"
h=0
1—(k—1)"1
1-(k—1)—1
fi
ST k-1

=h

o0 .
which means that the positive series Y f;(k—1)"7 must have a sequence of partial sums
j=0
which is bounded. This implies that the series is convergent.
Finally, we are going to prove Eq. (16). Suppose that the variable k > 3 is fixed. From

Eq. (17) we get
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-1

lim sup Z filk — 1) +2(k — 1)~¢=1
l—00 j=0

. E(d(l,k))
lmsup =i <

S} .

Having proven the convergence of > f;(k—1)77, we know that its sum is a positive real
j=0

number py. From

-1
lim » fi(k—1)7 =,
l—o0 =0

lim 2(k — 1)~V =0,
l—o0

we obtain

. E(d(l, k))

Similarly, from Eq. (18) we have

-1
... EWdE) . _; (-
ek Sl S RISV § : (k—1)"7 —2.4(k — (1-1)
hlmmf 1)1/ thllnf : ij(k 1) 2.4(k—1) )

which ultimately gives

o E(d(l k)
i =iz = e
From
L. E(d(l, k)) . E(d(l, k))
me < i inf s < imsup g T <
E(d(l,k
we get llir(r)lo % = pg, which proves Eq. (16), as desired. O

We will end this paper by proving our second main result, along with one of its direct
corollaries.

Theorem 2. For a given dendrimer d(l, k), where k > 3 and [ > 2, we have

E(d(L,k)) < (k- 1)"1/2 (2+ 0'5+€:/§+*/5), (19)
Ed(,k)) > (k—1)"1/2 <2 + :—f> : (20)
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Proof. For | = 2, we are going to prove that both Eq. (19) and Eq. (20) hold directly.
From Eq. (6), we conclude that E(d(2,k)) = 2(k — 1)3/2 4 2y/2k — 1, which gives us

E(d(2,k)) _3
2 942k —1)732V2k — 1
ez 22—
2 2% — 1
=92 o
AV —
2 1
2 2
R

1
We obviously have 4 /2 + 1 > /2, which proves Eq. (20). However, due to k > 3, we
1
also have /2 + — < \/g < /5 < 0.5+ 2+ /3 + /5, thereby proving Eq. (19) as

well.

For [ = 3, the expressions will again be proven directly. From Theorem 11, we get

E(d(3,k)) < > fi(k =17 4 2(k — 1)'/2,
j=0
2
E(d(3,k) > > fi(k—1)°/*77 —24(k —1)"/?,
j=0

where
() 20x ()2
lﬁzchot(%)«—Qcot(%)::2v5,
jazmm(%)—zw%%):%@—z.

Hence, we obtain

e =
E(d(3,k)) 2v2  2/5-2-24
(S Rl S S (S PR

We know that 21/5 > 4.4 = 2 + 2.4, which means that Eq. (20) must hold for I = 3. On
the other hand, we get

2v2  2v5-2+2 2v2  2V5
1 (k—1)2 _kf1+kkflﬂ
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193
2V2 1 2V5
T k-1 k-1 k-1
<2¢‘+ 2V5
“k—1'2 k-1
22+ /5
k-1

which proves Eq. (19), given the fact that 2v24+ 5 < 0.5+ vV2+ 3+ V5.
Now, suppose that [ > 4. By using Theorem 11 once again, we directly conclude that

% <3 Ak =17 +2(k =D, 21
7=0

( l 1/2 > ij —1)7 = 2.4(k —1)~¢7Y. (22)

From Eq. (22), we further obtain

E(d , -
T _111/2 Zf] 24k —1)"0-1
2v/2 2v5-2
=2 —2.4(k—1)"¢=1
troit o kD
2v2 252 )
2 —2.4(k—1)"
> +k—1+(k—1)2 (k—1)
ol 2v/2 25 —44

F—1 7 k1)

which completes our entire proof of Eq. (20), given the fact that 2v/5 > 4.4.
From Eq. (21), we have

E(d(Lk) X . ey
0 < fik—1)77 +2(k—-1)
CEIVSERPS

+oo
<> filk=1)7T +2(k—-1)7°
j=0

2v/2  2v5-2

2 = _
<2+k71+(/~c71)2+(k71)3+j§fj(k_1) J

Here, it is important to notice that sup f; =

f3 due to the results obtained in Lemma 14.
Jj=3

This implies
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E(d(l,k)) 2v2 252 2 > .
) 9 -1)7
T < +k71+(k71)2+(k71)3+;f3(k )
2v2 2v5 -2 2 fi = s
=92 — 177
R (k71)2+(k71)3+(k71)3j2::0<k )
22 252 2 1
:2+k\/_1 12/_12+k 13+kf313' L
- (k—1) (k—1) (k—=1)3 1-4
_2+2\/§ 2v/5 — 2 2 s
B E—1 (k=12 (k—-13 " (k—-2)(k—-1)2"
It is clear that
111
(k—12~2 k-1’
111
(k—1)3~4 k-1’
1 11
QP
k—2)(k—1)2~"2 k-1
as well was
™ ™
f3 = 2cot (E) — 2cot (g)
=2(24+v3) - 2(vV2+1)
=2-2V2+2V3.
We then obtain
E(d(l, k)) 2v2 V51 05 1-vV2+3
2
S 2 s W T e Ty
_2+2\/§+\/5—1+0.5+1—\/§+\/§
N E—1
0.54+vV2+V3+V56
=2 k-1 ’

thereby proving Eq. (19) for I > 4. O
Corollary 15. We have
E(d(L,k)) = O((k—1)""Y2)  as (I,k) — 0o over N x (N \ {1,2}).

Proof. For | = 1 and k > 3, we have E(d(2,k)) = 2Vk, making it straightforward to
conclude that
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E(d(2,k)) 3
el

E(d(2,k))
— L > 2
(h—1)i/z ==
E(d(2
i.e. % e (2, \/6] For [ > 2 and k > 3 we can use Theorem 2 to obtain

ﬂm@)d+w+ﬁ+ﬁ+ﬁ

(k— 1)1/ k—1 ’
B k) ., 2V2
(k- 1)-1/2 k—1

which further implies

E(d(l, k)) 2+05+¢§+¢§+¢5

(k —1)l-1/2 < 2
Bk _,
(k—1)-1/2 :
Since 2+ 0.5+ \/i; V3+v5 > \/6_3, we conclude that for all [ > 1 and k£ > 3, the given

inequality must hold:

E(d(l, k)) 45+v§+v§+wi

S S 2

The theorem statement follows directly. O
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