
Invent. math. (2022) 230:1071–1100
https://doi.org/10.1007/s00222-022-01140-x

Uniform Roe algebras of uniformly locally finite
metric spaces are rigid

Florent P. Baudier1 · Bruno M. Braga2 ·
Ilijas Farah3,4 · Ana Khukhro5 ·
Alessandro Vignati6 · Rufus Willett7

Received: 30 August 2021 / Accepted: 23 June 2022 / Published online: 28 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of
Springer Nature 2022

Abstract We show that if X and Y are uniformly locally finite metric spaces
whose uniform Roe algebras, C∗

u(X) and C∗
u(Y ), are isomorphic as C∗-

algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we
show that coarse equivalence between X and Y is equivalent to Morita equiv-
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1072 F. P. Baudier et al.

alence between C∗
u(X) and C∗

u(Y ). As an application, we obtain that if � and
� are finitely generated groups, then the crossed products �∞(�) �r � and
�∞(�)�r � are isomorphic if and only if� and� are bi-Lipschitz equivalent.

1 Introduction

Coarse geometry is the study ofmetric spaceswhen one forgets about the small
scale structure and focuses only on large scales. For example, this philosophy
underlies much of geometric group theory. As the local structure of a space
is irrelevant, one typically assumes that the spaces one is working with are
discrete: we will focus here on uniformly locally finite1 metric spaces (X, dX ),
meaning that supx∈X |Br (x)| < ∞ for all r > 0, where |Br (x)| is the cardinal-
ity of the closed ball in X of radius r centered at x . Typical examples that are
important for applications are finitely generated groups with wordmetrics, and
discretizations of non-discrete spaces such as Riemannian manifolds. There is
a natural coarse category of metric spaces considered from a large-scale point
of view, and the isomorphisms in this category are called coarse equivalences.

Here is the formal definition. Given metric spaces (X, dX ) and (Y, dY ), a
map f : X → Y is coarse if for all r > 0 there is s > 0 so that

dX (x, x ′) � r implies dY ( f (x), f (x ′)) � s

for all x, x ′ ∈ X . If f : X → Y and g : Y → X are coarse and

sup
x∈X

dX (x, g( f (x))) < ∞ and sup
y∈Y

dY (y, f (g(y))) < ∞

then f and g are called mutual coarse inverses, each of f and g is called a
coarse equivalence, and X and Y are said to be coarsely equivalent.

Associated to the large-scale structure of a uniformly locally finite metric
space is aC∗-algebra, i.e., a norm-closed and adjoint-closed algebra of bounded
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Uniform Roe algebras are rigid 1073

operators on a complex Hilbert space, called the uniform Roe algebra of X and
denoted by C∗

u(X). Prototypical versions of this C∗-algebra were introduced
by Roe [32] for index-theoretic purposes. The theory was consolidated in the
1990s by Roe, Yu and others, and uniform Roe algebras have since found
applications in index theory (for example, [18,37]), C∗-algebra theory (for
example, [26,35]), single operator theory (for example, [31,39]), topological
dynamics (for example, [8,22]), and mathematical physics (for example, [12,
23]).

Here is the formal definition. For a metric space (X, dX ), the propagation
of an X -by-X matrix a = [axy] of complex numbers is

prop(a) := sup{dX (x, y) | axy �= 0} ∈ [0, ∞].

If a = [axy] has finite propagation and uniformly bounded entries, then a
canonically induces a bounded operator on the Hilbert space �2(X) as long as
(X, dX ) is uniformly locally finite. For any such (X, dX ), the operators with
finite propagation form a ∗-algebra, and C∗

u(X) is the C∗-algebra defined as
the norm closure of this ∗-algebra.

For many applications of uniform Roe algebras, one wants to know how
much of the underlying metric geometry is remembered by C∗

u(X). This leads
to the foundational question below.

Problem 1.1 (Rigidity of uniform Roe algebras) If the uniform Roe algebras
of uniformly locally finite metric spaces are ∗-isomorphic, are the underlying
metric spaces coarsely equivalent?

Recently, the rigidity problem for uniform Roe algebras has been exten-
sively studied. For example: [38] started this study; [3] introduced several
new ideas that are relevant for this paper; and [25] represents the most recent
developments before this paper. All of these papers (and others) give positive
answers to Problem 1.1 in the presence of additional geometric conditions on
the underlying metric spaces.

1.1 Main results

In this paper, we give an unconditional positive answer to the rigidity problem.

Theorem 1.2 Let X and Y be uniformly locally finite metric spaces. If C∗
u(X)

and C∗
u(Y ) are ∗-isomorphic, then X and Y are coarsely equivalent.

We also obtain the analogue of this theorem for the C∗-algebra of ‘quasi-
local’ operators: see Theorem3.5 below.Wewill discuss an outline of the proof
in Sect. 1.2 below. For now, let us focus on some applications and elaborations.
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1074 F. P. Baudier et al.

A first application of Theorem 1.2 regards groups. Associated to an action
of a group � on a compact topological space K , there is a C∗-algebra crossed
product C(K ) �r � that models the underlying dynamics. In particular, one
can do this when K = β�, the Čech-Stone compactification of �, which is the
universal compact �-space in some sense. If � is discrete, C(β�) naturally
identifies with �∞(�), so we get the crossed product �∞(�) �r �. If � is
a finitely generated group, then it becomes a uniformly locally finite metric
space when equipped with a word metric. The uniform Roe algebra of �

then identifies with the C∗-algebra crossed product �∞(�) �r � discussed
above, i.e., there is a canonical ∗-isomorphism C∗

u(�) ∼= �∞(�)�r � (see [11,
Proposition 5.1.3]).

The following result is of interest in pure C∗-algebra theory and topological
dynamics (see Corollary 3.10 below for a more general statement).

Corollary 1.3 Let � and � be finitely generated groups. The following are
equivalent:

(1) With any choice of word metrics, � and � are bi-Lipschitz equivalent.2

(2) The C∗-algebras �∞(�) �r � and �∞(�) �r � are ∗-isomorphic.
Our next main result concerns Morita equivalence. This is a notion of iso-

morphism for C∗-algebras that is a little weaker than ∗-isomorphism. Roughly,
it says that the C∗-algebras involved are ∗-isomorphic ‘up to multiplicity’, and
is typically considered the ‘correct’ notion of isomorphism for C∗-algebras in
noncommutative geometry. That Morita equivalence of uniform Roe algebras
is connected to coarse equivalence of the underlying spaces seems to have been
guessed at by Gromov in the early 90s [20, page 263]. Brodzki, Niblo, and
Wright [9, Theorem 4] subsequently showed that coarse equivalence of uni-
formly locally finite metric spaces impliesMorita equivalence of their uniform
Roe algebras. Our methods allow us to obtain that the converse also holds.

Theorem 1.4 Let X and Y be uniformly locally finite metric spaces. The fol-
lowing are equivalent:

(1) X and Y are coarsely equivalent.
(2) C∗

u(X) and C∗
u(Y ) are Morita equivalent.

Our findings also allow us to remove the geometric assumptions from the
main result of [4]. Precisely, if X is a uniformly locally finite metric space
then the compact operators K(�2(X)) form an ideal in C∗

u(X). The associ-
ated quotient is the uniform Roe corona of X , denoted by Q∗

u(X). In [4], the
authors investigate whether rigidity also holds given the weaker assumption

2 Metric spaces (X, dX ) and (Y, dY ) are bi-Lipschitz equivalent if there is a bijection f : X → Y
such that f and f −1 are Lipschitz.
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Uniform Roe algebras are rigid 1075

of isomorphism between uniform Roe coronas. In this paper we obtain the
following:

Theorem 1.5 Let X and Y be uniformly locally finite metric spaces. IfQ∗
u(X)

and Q∗
u(Y ) are ∗-isomorphic and one assumes appropriate forcing axioms3,

then X and Y are coarsely equivalent.

Remark 1.6 There is also a “non-uniform” Roe algebra C∗(X) associated to a
bounded geometrymetric space: roughly, one defines thisC∗-algebra by taking
the matrix entries to be compact operators, as opposed to complex numbers.
Our methods do not obviously apply to Roe algebras: we refer to Remark 4.5
for detailed definitions, and discussion of the issues that arise. In the case of
Roe algebras, the state of the art rigidity result is obtained in the work of Li,
Špakula, and Zhang [25] mentioned above; the current paper offers no real
improvements.

1.2 The road to rigidity

Wenowdiscuss ourmethods of proof inmore detail. If H is aHilbert space then
B(H) denotes the C∗-algebra of all bounded operators on H . The strong oper-
ator topology onB(H) is the topology of pointwise convergence onB(H). We
write “SOT” as an abbreviation for “strong operator topology” and “SOT-

∑
”

for a sum that converges in the strong operator topology.
As already noted above, the C∗-algebra of compact operators K(�2(X)) is

an ideal in C∗
u(X), and in fact is the unique minimal ideal. As a result, a ∗-

isomorphism between uniform Roe algebras of uniformly locally finite metric
spaces sends compact operators to compact operators. Isomorphisms of the
compact operators must be “spatially implemented”, i.e., given by conjugation
by an isometric isomorphism between the corresponding Hilbert spaces (see
for example [16, Corollary 4.1.8]). From this discussion, it is not difficult to
deduce the following result.

Lemma 1.7 [38, Lemma 3.1] Let X and Y be uniformly locally finite metric
spaces and� : C∗

u(X) → C∗
u(Y ) be a ∗-isomorphism. Then there is an isomet-

ric isomorphism u : �2(X) → �2(Y ) so that �(a) = uau∗ for all a ∈ C∗
u(X).

In particular, � is rank-preserving and continuous for the strong operator
topology. 	

The automatic SOT-continuity of isomorphisms between uniformRoe algebras
will be very important for us. In addition to this basic observation, our proof
of Theorem 1.2 has two main ingredients at its core:

3 For the set theorist reader, this result is a theorem in ZFC + OCAT + MAℵ1 .
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(I) the “equi-approximability” of certain families of operators by operators
with uniformly bounded propagation (see Lemma 1.9);

(II) a uniform lower bound on certain matrix coefficients.4

Let us first look at equi-approximability.We need a definition which quanti-
fies how well a bounded operator can be approximated by a finite propagation
operator.

Definition 1.8 Let X be a metric space, ε > 0, and r � 0. An operator a in
B(�2(X)) is ε-r -approximable if there exists b ∈ B(�2(X)) with propagation
at most r such that ‖a − b‖ � ε.

The key “equi-approximability lemma” was obtained as an application of
the Baire category theorem and diagonalization methods in [3, Sect. 4] (a
weaker version appeared earlier in [38, Lemma 3.2]).

Lemma 1.9 [3, Lemma 4.9] Let X be a uniformly locally finite metric space
and let (an)n be a sequence of operators so that SOT-

∑
n∈M an converges to

an element of C∗
u(X) for all M ⊆ N. Then for all ε > 0 there is r > 0 so that

SOT-
∑

n∈M an is ε-r-approximable for all M ⊆ N. 	

The second ingredient (II) is a uniform lower boundoncertainmatrix entries.

Given a set X , (δx )x∈X denotes the standard orthonormal basis of �2(X) and,
given x, y ∈ X , exy denotes the rank 1 partial isometry sending δy to δx . The
current proofs of rigidity in the literature all follow a similar path: given a
∗-isomorphism � : C∗

u(X) → C∗
u(Y ), one uses some geometric property of Y

in order to ensure an inequality of the form

inf
x∈X sup

y∈Y
‖�(exx )δy‖ > 0. (1.1)

This inequality was first obtained in [38, Lemma 4.6] under the assumption
of Yu’s property A (see [46, Definition 2.1]), which is an amenability-like
property of metric spaces.

The inequality in line (1.1) was then shown to hold under conditions on
the absence of certain ghost operators in [3, Sect. 6]: an operator a = [axy]
on �2(X) is a ghost if limx,y→∞ axy = 0. Compact operators are easily seen
to be ghosts, and we regard these as the trivial ghost operators. Property A is
equivalent to the statement that all ghost operators are compact ( [34, Theorem
1.3]), i.e., that there are nonon-trivial ghosts. In [3,Theorem6.2], the inequality
in line (1.1) was established under the absence of certain families of non-trivial
ghost projections, which is much weaker. Prior to this paper, the most general
geometric condition that is sufficient to establish the inequality in line (1.1)
also used ghostly ideas, and is due to Li, Špakula, and Zhang [25, Theorem

4 This was formalized as rigidity of a ∗-isomorphism in [3, p. 1008].
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Uniform Roe algebras are rigid 1077

A]. Nonetheless, there are many examples where non-trivial ghosts exist, and
that do not satisfy the Li–Špakula–Zhang condition.

The reason the condition in line (1.1) is useful is that it shows the existence
of a map f : X → Y so that

inf
x∈X ‖�(exx )δ f (x)‖ > 0.

The situation is symmetric, so that one also gets a map g : Y → X satisfying
the same condition with the roles of X and Y reversed. Repeated use of the
equi-approximability lemma (Lemma 1.9 above) implies that the maps f and
g are both coarse, and in fact mutual coarse inverses. We isolate the key point
in the following proposition, the proof of which is contained in the proof of
[38, Theorem 4.1] (see also [3, Theorem 4.12]).

Proposition 1.10 Let X and Y be uniformly locally finite metric spaces and
� : C∗

u(X) → C∗
u(Y ) be a ∗-isomorphism. If there are maps f : X → Y and

g : Y → X so that infx∈X ‖�(exx )δ f (x)‖ > 0 and inf y∈Y ‖�−1(eyy)δg(y)‖ >

0, then f and g are mutual coarse inverses. 	

The key new idea in the current paper establishes the inequality in line

(1.1) unconditionally. This is done by combining the equi-approximability
lemma (Lemma 1.9) with a quantitative result on the approximate convexity
of the range of a finite-dimensional, countably additive vector measure (see
Lemma 2.1). We give two proofs of the latter fact: one due to the authors
which is an application of the Shapley–Folkman theorem from economics,
and the other suggested by a referee, which is based on Lindenstrauss’ proof
of Lyapunov’s theorem.

1.3 More rigidity

We conclude this introduction with two other rigidity results.
For the first, it has already been noted above that the previous partial solu-

tions to Problem1.1 rely on conditions on the ideal of ghost operators inC∗
u(X).

By its very definition, the “ghost-ness” of an operator is highly dependent on
the choice of the orthonormal basis for �2(X). As such, it was unclear until
now what happened to ghosts under ∗-isomorphisms. We solve this problem
with the following result.

Theorem 1.11 Every ∗-isomorphism between uniform Roe algebras of uni-
formly locally finite metric spaces sends ghost operators to ghost operators.

For the second result, we look at possibly non-metrizable coarse spaces. Just
as topological spaces abstract the small scale structure of metric spaces, coarse
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1078 F. P. Baudier et al.

spaces abstract their large scale structure: see Sect. 5 for precise definitions.
The definition of uniform Roe algebras extends to coarse spaces naturally, and
rigidity of uniformRoe algebras of nonmetrizable coarse spaces has been stud-
ied in [3,5]. The proofs of ourmain results do not immediately extend to coarse
spaces, since Lemma 1.9 depends heavily on Baire categorical methods: these
require coarse spaces to be metrizable (or at least small; see [3, Definition 4.2]
and [19, §8.5] formore information on the role of the Baire Category theorem),
which translates to a countability condition on the associated coarse structure.

In the earlier work on rigidity, property A plays a key role, typically via
the operator norm localization property of Chen, Tessera, Wang, and Yu [13,
Section 2], which was shown to be equivalent to property A by Sako [36].
Our vector measure approach together with a new lemma inspired by Sako’s
work implies that the operator norm localization property holds for certain
operators regardless of the geometry of the spaces (Lemma 5.4). We are thus
able to establish the result below for general coarse spaces (see Sect. 5 for the
definition of a coarse embedding).

Theorem 1.12 Let (X, E)and (Y,F)beuniformly locally finite coarse spaces,
and suppose (X, E) is metrizable. If C∗

u(X) and C∗
u(Y ) are ∗-isomorphic, then

Y is countable and X coarsely embeds into Y .

This result provides the first example of countable, coarse spaces without
property A, whose uniform Roe algebras are not ∗-isomorphic to the uniform
Roe algebra of any uniformly locally finite metric space. Indeed, any coarse
space which contains no infinite metric space coarselymust satisfy this. In par-
ticular, this holds for (N, Emax), where Emax is the maximal uniformly locally
finite coarse structure on N, i.e., E ∈ E if and only if the cardinality of the
vertical and horizontal sections of E are uniformly bounded.

Corollary 1.13 Let Emax be the maximal uniformly locally finite coarse struc-
ture on N. Then C∗

u(N, Emax) is not ∗-isomorphic to the uniform Roe algebra
of any uniformly locally finite metric space. 	


2 Estimating the distance between the range of a vector measure and its
convex hull

In this section, we prove a quantitative estimate on the distance between the
range of a finite-dimensional vector measure on P(N)—the power set of N—
and its convex hull which will be crucial in what follows.

A vector measure is a function μ from a σ -algebra 
 of sets into a Banach
space which is countably additive, i.e., if (An)n∈N is a sequence of disjoint
sets in 
, then μ(

⋃
n An) = ∑

n μ(An), where the sum converges in norm.

123



Uniform Roe algebras are rigid 1079

The next lemma is the main result of this section. For the statement, let us
note that the norm on R

m is arbitrary, and that conv(S) denotes the convex
hull of a subset of a vector space.

Lemma 2.1 Let m ∈ N and μ : P(N) → (Rm, ‖ · ‖) be a vector measure.
Then, for all v ∈ conv(μ[P(N)]) and ε > 0, there exists a finite subset F ⊆ N

such that

‖μ(F) − v‖ � sup{‖μ(C)‖ | C ⊆ N, |C | � m} + ε.

In particular, ‖μ(F) − v‖ � m supn∈N
‖μ({n})‖ + ε.

We offer two proofs of Lemma 2.1. The first one was suggested by the
referee, and is a modification of Lindenstrauss’ proof of Lyapunov’s convexity
theorem: see [28].

First proof of Lemma 2.1 We will find a (possibly infinite) set F such that
‖μ(F) − v‖ � sup{‖μ(C)‖ | C ⊆ N, |C | � m}. This suffices since μ(F) is
the supremumofμ(G), withG ⊆ F finite. Throughout the proof, and contrary
to our usual conventions in this paper, all �∞ and �1 spaces are taken over R,
not C.

Identify A ⊆ N with the characteristic function of A, χA ∈ �∞(N), and
let T be the linear extension of μ to span{χA | A ⊆ N} ⊆ �∞(N). We claim
that T is bounded and weak-∗-continuous, whence in particular it extends to
all of �∞(N). It suffices to show that the composition of T with each one of
the coordinate projections π j : R

m → R has these properties. Fix j � m and
define μ j := π j ◦ μ, which we may think of as a function μ j : N → R.

Since X j := {n | μ j ({n}) � 0} and its complement explicitly provide the
Hahn decomposition of μ j , the latter is absolutely summable. As π j ◦ T is
the linear functional on �∞(N) given by pairing with μ j ∈ �1(N), it is weak-∗
continuous.

Now, let B := �∞(N)1,+ denote those g ∈ �∞(N) such that 0 � g �
1, which is a weak-∗ compact set. Noting that B contains all characteristic
functions of subsets of N, T (B) is a convex set that contains μ(P(N)). Let
v ∈ conv(μ(P(N))) be arbitrary. Then W0 := T−1({v}) ∩ B is a non-empty,
convex, weak-∗ closed subset of B. Hence by the Krein-Milman theorem, W0
has an extreme point, say g.

We claim that the set {n | 0 < g(n) < 1} has cardinality at most m.
Otherwise, for some ε > 0 the set E = {n | ε < g(n) < 1−ε} has cardinality
greater than m. The rank-nullity theorem implies that the restriction of T to
�∞(E) ⊆ �∞(N) contains an element h of norm one in its kernel. Then g±εh
are distinct points inW0 such that g is their midpoint, contradicting extremity.
Therefore g differs from the characteristic function of F := {n | g(n) = 1}
on at most m points, as required. 	
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1080 F. P. Baudier et al.

The second proof of Lemma 2.1 (our original proof) is an application of the
Shapley–Folkman theorem. The insight provided by this theorem was one of
the key factors that led to the proof of our main result.

If S1, ..., Sn are subsets of a vector space, theirMinkowski sum is

n∑

i=1

Si := {s1 + · · · + sn | si ∈ Si }.

It is a well-known elementary fact that the convex hull of a Minkowski sum is
the Minkowski sum of the convex hulls. Precisely, given subsets (Si )ni=1 of a
vector space, we have

conv
( n∑

i=1

Si
)

=
n∑

i=1

conv(Si ). (2.1)

The Shapley–Folkman theorem (see [40, Appendix 2], or [47] for a short
proof) provides additional quantitative information about the nature of the
decomposition in (2.1) when the subsets are drawn from a finite-dimensional
vector space. Precisely:

Theorem 2.2 (Shapley–Folkman theorem) Let m ∈ N, (Si )ni=1 be nonempty
subsets of R

m. Then each v ∈ conv(
∑n

i=1 Si ) can be written as v = ∑n
i=1 vi

where vi ∈ conv(Si ) for all i ∈ {1, . . . , n}, and so that

|{i ∈ {1, . . . , n} | vi /∈ Si }| � m.

We now use the Shapley–Folkman theorem to prove Lemma 2.1 for finite
sets.

Lemma 2.3 Let m ∈ N, X be a finite set, and μ : P(X) → (Rm, ‖ · ‖) be a
vector measure. Then, for all v ∈ conv(μ[P(X)]), there exists a subset F ⊆ X
such that

‖μ(F) − v‖ � max{‖μ(C)‖ | C ⊆ X, |C | � m}.

In particular, ‖μ(F) − v‖ � mmaxx∈X ‖μ({x})‖.
Proof By shrinking X , we may assume that μ({x}) �= 0 for all x ∈ X . For
each x ∈ X , define Sx := {0, μ({x})} ⊆ R

m . As 0 ∈ Sx , we have

μ[P(X)] =
∑

x∈X
Sx .
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Uniform Roe algebras are rigid 1081

Hence, if v ∈ conv(μ[P(X)]), then it follows from (2.1) that there are vx ∈
conv(Sx ), for x ∈ X , such that v = ∑

x∈X vx . By the Shapley–Folkman
theorem, we may assume that the set C := {x ∈ X | vx /∈ Sx } has cardinality
at most m. From (2.1),

∑
x∈C conv(Sx ) is equal to the convex hull of the set∑

x∈C Sx = {μ(D) | D ⊆ C}. Therefore
∥
∥
∥
∥
∥

∑

x∈C
vx

∥
∥
∥
∥
∥

� max
D⊆C

‖μ(D)‖ � max{‖μ(D)‖ | D ⊆ X, |D| � m}.

Define

S := {x ∈ X | vx = μ({x})} and V := {x ∈ X | vx = 0}.

Note that S 
 C 
 V = X . Hence,

‖μ(S) − v‖ =
∥
∥
∥
∥μ(S) −

∑

x∈X
vx

∥
∥
∥
∥

�
∥
∥
∥
∥μ(S) −

∑

x∈S
vx

∥
∥
∥
∥ +

∥
∥
∥
∥

∑

x∈C
vx

∥
∥
∥
∥ +

∥
∥
∥
∥

∑

x∈V
vx

∥
∥
∥
∥

� max{‖μ(D)‖ | D ⊆ X, |D| � m}.

To conclude, it remains to note that ‖μ(D)‖ � |D|maxx∈D ‖μ({x})‖ for all
D ⊆ X . 	


Our second proof of Lemma 2.1 now follows by a simple approximation
argument.

The second proof of Lemma 2.1 If supn∈N
‖μ({n})‖ ∈ {0, ∞}, the result is

trivial, so assume that supn∈N
‖μ({n})‖ ∈ (0, ∞). Let ε > 0 and v ∈

conv(μ[P(N)]). Then v = ∑k
i=1 λiμ(Ni ) for some N1, . . . , Nk ⊆ N and

λ1, . . . , λk � 0 such that
∑k

i=1 λi = 1. Pick finite subsets A1, . . . , Ak ⊆ N

so that ‖μ(Ni )−μ(Ai )‖ < ε for all 1 � i � k. Let A := ⋃k
i=1 Ai and μA be

the restriction of μ to P(A). So, A is finite and vA := ∑k
i=1 λiμ(Ai ) belongs

to conv(μA[P(A)]). By Lemma 2.3, there exists a (finite) subset F ⊆ A such
that

‖μA(F) − vA‖ � max{‖μA(C)‖ | C ⊆ A, |C | � m}
� sup{‖μ(C)‖ | C ⊆ N, |C | � m}.
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Since μ(F) = μA(F), we have that

‖μ(F) − v‖ � ‖μA(F) − vA‖ + ‖vA − v‖

� sup{‖μ(C)‖ | C ⊆ N, |C | � m} +
k∑

i=1

λi‖μ(Ai ) − μ(Ni )‖

� sup{‖μ(C)‖ | C ⊆ N, |C | � m} + ε,

and the statement is proved. 	

Remark 2.4 The celebrated Lyapunov convexity theorem [27] states that the
range of a finite-dimensional atomless vector measure is closed and convex.
Our measures of interest are atomic, however, and the ranges of such measures
are not necessarily convex.On the other hand, a theoremof Elton–Hill (see [17,
Theorem1.2]) quantifies the distance between the range of a finite-dimensional
vector measure and its convex hull in terms of the size of the atoms of the one-
dimensional coordinatemeasures. In a less elementary and self-containedway,
Lemma 2.1 can also be obtained as an application of the Elton–Hill theorem.

3 Rigidity of uniform Roe algebras

This section contains the proofs of Theorems 1.2 and 1.11. The former could
also be obtained as a corollary ofTheorem4.1.However, for expository reasons
we chose to present the proof of Theorem 1.2 first.

Lemma 3.2 below is our main technical tool, and is of independent interest.
The following simple observation about idempotents was inspired by the ref-
eree report; it is used near the end of the proof of Lemma 3.2, and considerably
simplifies our original argument.

Lemma 3.1 Let E be a Banach space, p ∈ B(E) be an idempotent bounded
operator, and v ∈ E be a vector. Let δ > 0. If

∥
∥pv − 1

2v
∥
∥ < δ, then ‖v‖ <

2‖2p − 1‖δ.
If moreover E is a Hilbert space and p is a (self-adjoint) projection, then

‖v‖ < 2δ.

Proof Define w := 1
2v ∈ E , and a := 2p− 1 ∈ B(E). Then a2 = 1, whence

‖w‖ = ‖a2w‖ � ‖a‖‖aw‖ = ‖a‖‖2pw − w‖ = ‖a‖‖pv − w‖ < ‖a‖δ,

giving the general result. In the Hilbert space case, we note that a is unitary,
so in particular ‖a‖ = 1. 	
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Lemma 3.2 Let ε, r > 0 and X be a uniformly locally finite metric space,
and define Nr := supx∈X |Br (x)|. Let (pn)n∈N be a sequence of projections
in B(�2(X)) such that:

(1) SOT-
∑

n∈A pn is ε-r-approximable for all A ⊆ N, and
(2) SOT-

∑
n∈N

pn = 1�2(X).

For each x ∈ X and δ > 0, define M(x, δ) := {n ∈ N | ‖pnδx‖ � δ}. Then,
if δ � ε/(2Nr ), we have

inf
x∈X

∥
∥
∥
∥

∑

n∈M(x,δ)

pnδx

∥
∥
∥
∥ � 1 − 4ε.

Proof Fix ε, r > 0 and Nr as in the statement. For A ⊆ N define pA :=
SOT-

∑
n∈A pn . Notice that the condition pN = 1�2(X) forces the projections

(pn)n to be mutually orthogonal, so each pA is a projection. Fix δ � ε/(2Nr )

and x ∈ X . Define M := M(x, δ) and M ′ := N \ M .
Now comes the crucial vector measure argument. Let π : �2(X) →

�2(Br (x)) be the canonical orthogonal projection, which we identify with
χBr (x).

5 We define a vector measure μ : P(M ′) → �2(Br (x)) by μ(A) :=
πpAδx for all A ⊆ M ′ (μ is clearly countably additive). As ‖μ({n})‖ =
‖πpnδx‖ � ‖pnδx‖, it follows from the definition ofM ′ that supn∈M ′ ‖μ({n})‖
< δ. Therefore, as μ(M ′)/2 belongs to the convex hull of the range of μ and
as dimR(�2(Br (x))) � 2Nr , Lemma 2.1 gives a subset A ⊆ M ′ such that

∥
∥
∥μ(A) − μ(M ′)

2

∥
∥
∥ < 2Nrδ � ε (3.1)

On the other hand,

∥
∥
∥μ(A) − μ(M ′)

2

∥
∥
∥ =

∥
∥
∥π

(
pA − 1

2
pM ′

)
δx

∥
∥
∥ =

∥
∥
∥π

(1

2
pA − 1

2
pM ′\A

)
δx

∥
∥
∥.

(3.2)

As pA and pM ′\A are ε-r -approximable, so is their convex combination 1
2 pA−

1
2 pM ′\A, whence ‖(1 − π)(12 pA − 1

2 pM ′\A)δx‖ < ε.

5 Here we use the following standard notation: for S ⊆ X , we let χS := SOT-
∑

x∈S exx , i.e.,
χS is the operator on �2(X) that projects onto the coordinates indexed by S.
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This last inequality, lines (3.1) and (3.2), and the fact that pA = pA pM ′
together imply that

∥
∥
∥pA pM ′δx − 1

2
pM ′δx

∥
∥
∥ �

∥
∥
∥(1 − π)

(1

2
pA − 1

2
pM ′\A

)
δx

∥
∥
∥

+
∥
∥
∥μ(A) − μ(M ′)

2

∥
∥
∥ < 2ε.

Hence Lemma 3.1 implies that ‖pM ′δx‖ < 4ε. Using assumption (2), we have
that pM + pM ′ = 1, so ‖pMδx‖ � 1 − 4ε. As pM = ∑

n∈M(x,δ) pn , we have
the desired inequality. 	


Lemmas 1.9 and 3.2 imply the following corollary.

Corollary 3.3 Let X be a uniformly locally finite metric space and let (pn)n∈N

be a sequence of projections in B(�2(X)) such that

(1) SOT-
∑

n∈A pn ∈ C∗
u(X) for all A ⊆ N, and

(2) SOT-
∑

n∈N
pn = 1�2(X).

Then,

inf
x∈X sup

n∈N

‖pnδx‖ > 0.

Proof et ε := 1/5. Then Lemma 1.9 implies there is r such that the projection
SOT-

∑
n∈A pn is ε-r -approximable for all A ⊆ N. Lemma 3.2 implies in

particular that for δ = 1/(10Nr ) and any x ∈ X , M(x, δ) is non-empty.
Hence

inf
x∈X sup

n∈N

‖pnδx‖ � 1/(10Nr ).

	

Proof of Theorem 1.2 Fix a ∗-isomorphism � : C∗

u(X) → C∗
u(Y ). By Lem-

ma1.7,� is strongly continuous, so (�(exx))x∈X satisfies the conditions on the
family (pn)n∈N from Corollary 3.3. Therefore, there are δ > 0 and g : Y → X
such that

‖�−1(eyy)δg(y)‖ = ‖�(eg(y)g(y))eyy‖ = ‖�(eg(y)g(y))δy‖ > δ

for all y ∈ Y .
Replacing δ by a smaller positive real if necessary, an argument analogous

to the one above applied to�−1 : C∗
u(Y ) → C∗

u(X) gives us a map f : X → Y
such that

‖�(exx )δ f (x)‖ > δ,
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for all x ∈ X . By Proposition 1.10, f is a coarse equivalence. 	

In the remainder of this section, we give several related rigidity results that

can be established using the techniques developed above.

3.1 Quasi-local operators

The first of our additional rigidity results concerns quasi-local operators as in
the next definition.

Definition 3.4 A bounded operator a on �2(X) is ε-r -quasi-local if whenever
A, B ⊆ X satisfy d(A, B) > r , we have ‖χAaχB‖ < ε, and is quasi-local if
for all ε > 0 there exists r � 0 such that a is ε-r -quasi-local. The collection
of all quasi-local operators forms a C∗-algebra, denoted C∗

ql(X).

One has C∗
u(X) ⊆ C∗

ql(X), and Špakula-Zhang [42, Theorem 3.3] (building

on techniques from Špakula-Tikuisis [41]) have shown that this inclusion is
the identity when X has property A. In general, it is not known whether the
inclusion C∗

u(X) ⊆ C∗
ql(X) can be strict.

Theorem 3.5 Let X and Y be uniformly locally finite metric spaces. IfC∗
ql(X)

and C∗
ql(Y ) are ∗-isomorphic, then X and Y are coarsely equivalent.

Proof The proof is similar to that of Theorem 1.2, so we just give a sketch.
The first step is to establish a quasi-local version of the equi-approximability
lemma (Lemma 1.9). This says: “if (an)n is a sequence of orthogonal opera-
tors on �2(X) so that SOT-

∑
n∈M an converges to an element of C∗

ql(X) for
all M ⊆ N, then for all ε > 0 there is r � 0 such that for all M ⊆ N,
SOT-

∑
n∈M an is ε-r -quasi-local.” This quasi-local equi-approximability

lemma follows from a slight adaptation of [38, Lemma 3.2]. On the other
hand, the proof of Lemma 3.2 goes through verbatim if condition (1) from the
statement is replaced with “SOT-

∑
n∈A pn is ε-r -quasi-local for all A ⊆ N”.

This quasi-local Lemma 3.2 and the quasi-local equi-approximability lemma
imply that Corollary 3.3 holds with “C∗

u(X)” replaced by “C∗
ql(X)”. Finally,

the quasi-local equi-approximability lemma is enough to establish the ana-
logue of Proposition 1.10 for an isomorphism � : C∗

ql(X) → C∗
ql(Y ) (this

is essentially what is done in the original rigidity paper [38, Theorem 4.1]),
which completes the proof. 	


3.2 Uniform Roe algebras on more general Banach spaces

A second elaboration concerns Banach algebras of operators on Banach spaces
equippedwith an appropriate basis, as developed by the second author [6]. This
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material requires some background on bases of Banach spaces: for the benefit
of non-experts, we introduce the terminology we need (see e.g. [1] for more
detailed background).

Definition 3.6 A sequence (en)n∈N in a Banach space E is a Schauder basis
if every e ∈ E can be expressed uniquely as e = ∑

n λnen for some scalars
(λn)n∈N, where the sum converges in norm.

A Schauder basis (en)n∈N is unconditional if for every permutation π :
N → N the sequence (eπ(n))n∈N is a Schauder basis. If moreover for every
permutation π : N → N, (eπ(n))n∈N is equivalent to (en)n∈N, i.e. the map∑

n λnen ∈ E �→ ∑
n λneπ(n) ∈ E defines an isomorphism, the basis is said

to be symmetric.

Definition 3.7 Let E be a Banach space equipped with a fixed Schauder basis
E = (en)n∈N, and let dE be a fixed uniformly locally finite metric on N. For
each n ∈ N, let e∗

n be the bounded6 linear functional on E determined by
e∗
n(em) := δnm , where the right hand side is the Kronecker δ-function.
A bounded operator a on E has propagation at most r if e∗

n(aem) = 0
whenever dE (n,m) > r . The uniform Roe algebra Bu(dE , E) associated to
the triple (E, E, dE ) is the norm closure of the finite propagation operators
inside the set B(E) of all bounded operators on E .

The reason one takes N as the set underlying the metric space in Definition
3.7 is that the definition and properties of a Schauder basis require an ordering
on the basis. However, for the rigidity theorem below we assume our bases
are symmetric, so this ends up being irrelevant: the reader could just replace
(N, dE ) and (N, dF ) with any uniformly locally finite metric spaces in the
statement of the theorem.

Theorem 3.8 Let (E, E, dE ) and (F,F, dF ) be triples as in Definition
3.7 with E and F symmetric Schauder bases. Assume that Bu(dE , E) and
Bu(dF ,F) are isomorphic as Banach algebras. Then (N, dE ) and (N, dF ) are
coarsely equivalent.

Proof As for Theorem 3.5, we just sketch the proof. As in [6, Proposition 3.1],
the absolute property of the unconditional basis (see e.g. [1, Proposition 3.1.3])
implies that Bu(dE , E) contains a copy of �∞(N) acting as multiplication
operators with respect to the basis E .

One then needs an analogue of Lemma 1.7, i.e. that for a Banach algebra
isomorphism � : Bu(dE , E) → Bu(dF ,F) there is an isomorphism (not nec-
essarily isometric) u : E → F such that�(a) = uau−1 for all a ∈ Bu(dE , E).

6 For a proof that e∗n is extends to a well-defined bounded linear functional, see for example [1,
Theorem 1.1.3].
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In particular, this implies that � is rank-preserving and strongly continuous.
This is established in [6, Lemma 7.5]. The second ingredient we need is equi-
approximabilty (i.e. an analogue of Lemma 1.9), which is established in [6,
Theorem 7.9 and Lemma 7.10].

Having got these ingredients, an analogue of the rigidity criterion in Propo-
sition 1.10 goes through with exactly the same proof. It remains to establish
an analogue of Lemma 3.2, which also goes through directly with the same
proof as long as one has uniform bounds on the norms of χA for any A ⊆ N;
this last fact is true since an unconditional basis is suppression-unconditional
(see e.g. [1, Proposition 3.1.5]). 	


We note that Theorem 3.8 applies in particular when E = F = �p(N), the
basis is the canonical one, and we equipNwith two different uniformly locally
finite metrics dE and dF . In this case if p ∈ [1, ∞) \ {2}, Theorem 3.8 was
proved byChung andLi (see [15, Theorem1.7]) under the stronger assumption
of the algebras being isometrically isomorphic as Banach algebras (under this
stronger assumption, the authors even conclude that the metric spaces are
bijectively coarse equivalent). The method of Chung and Li is quite different:
the key point is that for p ∈ [1, ∞)\{2} isometric self-isomorphisms of �p(N)

are given by permutations of the basis, andmultiplication of the basis elements
by scalars of modulus one: see [15, Proposition 2.3] for more details.

3.3 Amenability and groups

For the next result, we use the notion of amenability for uniformly locally
finite metric spaces, as introduced by Block and Weinberger [2, Sect. 3]. It
extends to uniformly locally finite metric spaces the classical group-theoretic
notion of amenability.

Corollary 3.9 Let X and Y be uniformly locally finite metric spaces, and
consider the following statements:

(1) X and Y are coarsely equivalent via a bijective coarse equivalence.
(2) The C∗-algebras C∗

u(X) and C∗
u(Y ) are isomorphic.

Then (1) implies (2) in general, and (2) implies (1) if X is non-amenable.

Proof The implication from (1) to (2) is well-known (e.g., [3, Theorem 8.1]):
if f : X → Y is a bijective coarse equivalence, then one defines a unitary
isomorphism u : �2(X) → �2(Y ) by the formula uδx := δ f (x) for all x ∈ X ,
and direct checks show that uC∗

u(X)u∗ = C∗
u(Y ).

For the converse, suppose that C∗
u(X) and C∗

u(Y ) are ∗-isomorphic, whence
by Theorem 1.2, X and Y are coarsely equivalent. If X is not amenable, then
X being coarsely equivalent to a uniformly locally finite space Y implies that
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X is bijectively coarsely equivalent to it as shown in [43, Theorem 5.1] (the
key idea is from [44, Theorem 4.1]). 	


If X and Y are countable groups, we can do better. The following result
gives Corollary 1.3.

Corollary 3.10 Let � and � be countable discrete groups equipped with uni-
formly locally finite metrics that are invariant under left translation.7 Then the
following are equivalent:

(1) � and � are coarsely equivalent via a bijective coarse equivalence.
(2) The C∗-algebras �∞(�) �r � and �∞(�) �r � are isomorphic.

Moreover, if � and � are finitely generated and equipped with word metrics,
then one can replace “bijective coarse equivalence” in (1) with “bi-Lipschitz
bijection”.

Proof We use the well-known identification C∗
u(�) ∼= �∞(�) �r � (see [11,

Proposition 5.1.3]) to replace the crossed products in (2) with uniform Roe
algebras.

As already noted in the proof of Corollary 3.9, (1) implies (2) in general, and
(2) implies (1) when � is non-amenable. On the other hand, if � is amenable,
then as it is a group it has property A by [45, Lemma 6.2]. A ∗-isomorphism
between uniform Roe algebras of uniformly locally finite metric spaces, one
of which has property A, gives a bijective coarse equivalence between the
underlying metric spaces (this was proved in [43, Corollary 6.13] for metric
spaces and in [5, Theorem 1.3] for arbitrary coarse spaces).

Assume now that � and � are finitely generated and equipped with word
metrics, and assume that C∗

u(�) ∼= C∗
u(�). Using our discussion so far, there is

a bijective coarse equivalence f : � → �. As� and� are finitely generated, it
is straightforward to check that they are quasi-geodesic in the sense of [30,Def-
inition 1.4.10]. Hence, f is a quasi-isometry (cf. [21, Proposition A.3] or [30,
Corollary 1.4.14]). As infγ �=γ ′∈� d�(γ, γ ′) = 1 and infλ�=λ′∈� d�(λ, λ′) = 1,
a bijective quasi-isometry is automatically bi-Lipschitz. 	

Remark 3.11 We do not know whether (1) and (2) from Corollary 3.9 are
equivalent for uniformly locally finite metric spaces in general: a counterex-
ample, if it exists, would have to be a pair of amenable, uniformly locally finite
metric spaces, neither of which has property A. Many such examples exist: for
example, any expander defines an amenable, uniformly locally finite metric
space without property A.

7 Any countable group admits such a metric, which is moreover unique up to bijective coarse
equivalence (e.g., [45, Proposition 2.3.3]).
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3.4 Uniform Roe coronas

We now give the proof of Theorem 1.5. Recall that the uniform Roe corona,
Q∗
u(X), of X is the quotient of the uniform Roe algebra C∗

u(X) of X by the
ideal of compact operators K(�2(X)).

Proof of Theorem 1.5 Suppose that X andY are uniformly locally finitemetric
spaces and that Q∗

u(X) and Q∗
u(Y ) are ∗-isomorphic. We will prove that OCAT

and MAℵ1 together imply that X and Y are coarsely equivalent.
Let � : Q∗

u(X) → Q∗
u(Y ) be a ∗-isomorphism, and let πX : C∗

u(X) →
Q∗
u(X) andπY : C∗

u(Y ) → Q∗
u(Y )be the canonical projections.By [4, Theorem

1.5], � and �−1 are liftable on the diagonals in the sense of [4, Definition
1.4(2)], i.e., there are strongly continuous ∗-homomorphisms � : �∞(X) →
C∗
u(Y ) and � : �∞(Y ) → C∗

u(X) such that

�(πX (a)) = πY (�(a)) and �−1(πY (b)) = πX (�(b))

for all a ∈ �∞(X) and all b ∈ �∞(Y ).

Claim 3.12 There are cofinite subsets X ′ ⊆ X and Y ′ ⊆ Y such that

inf
x∈X ′ supy∈Y

‖�(exx )δy‖ > 0 and inf
y∈Y ′ supx∈X

‖�(eyy)δx‖ > 0.

Proof By symmetry, it is enough to show that the result holds for �. For that,
define p := 1�2(X) − �(1�2(Y )). Then, as �(πX (�(1�2(Y )))) = πY (1�2(Y )),
it follows that �(πX (p)) = 0. Hence, πX (p) = 0 which means that p is
compact. As p is a projection, p has finite-rank. As � is strongly continuous,
we have that

1�2(X) = p + �(1�2(Y )) = p + SOT-
∑

y∈Y
�(eyy).

Therefore, Corollary 3.3 gives a partition X = X ′ 
 X ′′ and a map f : X ′ → Y
so that infx∈X ′ ‖�(e f (x) f (x))δx‖ > 0 and infx∈X ′′ ‖pδx‖ > 0. As p has finite
rank, X ′ must be cofinite. By [4, Lemma 6.3], replacing X ′ by a smaller cofinite
subset of X if necessary, we can assume that infx∈X ′ ‖�(exx )δ f (x)‖ > 0. The
claim follows. 	


By the previous claim, it follows immediately from [4, Theorem 6.11] that
X and Y are coarsely equivalent. 	
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3.5 Ghosts

Finally in this section, we step back from direct rigidity results, and prove
Theorem 1.11 on ghost operators.

Proof of Theorem 1.11 Let X and Y be uniformly locally finite metric spaces
and � : C∗

u(X) → C∗
u(Y ) be a ∗-isomorphism. We need to prove that �

sends ghost operators to ghost operators. Proceeding as in the proof of The-
orem 1.2, there are δ > 0 and a coarse equivalence f : X → Y such that
‖�(exx )δ f (x)‖ > δ for all x ∈ X .

Suppose that A ⊆ X is infinite. Since X and Y are uniformly locally finite,
the set f [A] is also infinite. As ‖�(χA)δ f (a)‖ > δ for all a ∈ A, �(χA)

cannot be a ghost.
Now fix an arbitrary nonghost a ∈ C∗

u(X). Pick ε > 0 and sequences of
distinct elements (xn)n and (zn)n in X , such that |〈aδxn , δzn 〉| > ε for all
n ∈ N. Passing to subsequences if necessary and defining A := {xn | n ∈ N}
and B := {zn | n ∈ N}, we can assume that χBaχA − SOT-

∑
n eznznaexnxn

is compact. Therefore, as χBaχA belongs to the ideal generated by a, so
does SOT-

∑
n eznznaexnxn . As |〈aδxn , δzn 〉| > ε for all n ∈ N, it follows that

b := SOT-
∑

n eznxn belongs to the ideal generated by a, and hence so does
χA = b∗b (alternatively, [14, Lemma 3.4] also implies that χA belongs to
the ideal generated by a, even without going to subsequences). Since � is a
∗-isomorphism, �(χA) belongs to the ideal generated by �(a). Since ghosts
form an ideal, if �(a) is a ghost, then so is �(χA). Hence, by the previous
paragraph, �(a) is not a ghost. A symmetric argument gives that nonghost
operators in C∗

u(Y ) are mapped by �−1 to nonghost operators in C∗
u(X), and

the conclusion follows. 	


4 Rigidity of stable Roe algebras and Morita equivalence

Given a uniformly locally finite metric space X and an infinite-dimensional
separable Hilbert space H , the stable Roe algebra of X is defined by

C∗
s (X) := C∗

u(X) ⊗ K(H),

where the tensor product above is the minimal tensor product of C∗-algebra
theory. We can describe C∗

s (X) more concretely as follows. For x ∈ X , let
vx : H → �2({x}, H) ⊆ �2(X, H) denote the canonical inclusion. For a
bounded operator a on �2(X, H) and x, y ∈ X , define the matrix entries
axy := v∗

xavy ∈ B(H), and define the propagation of a to be

prop(a) := sup{dX (x, y) | axy �= 0} ∈ [0, ∞].
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Given a finite-dimensional vector space H ′ ⊆ H and r > 0, let C∗
s [X, r, H ′]

denote the subspace of all operators a = [axy] ∈ B(�2(X, H)) with propaga-
tion at most r and such that each axy is an operator in B(H ′) (where B(H ′) is
identifiedwith aC∗-subalgebra ofB(H) in the canonical way). Then, under the
canonical identification �2(X)⊗H = �2(X, H), the stable Roe algebra C∗

s (X)

is the norm-closure in B(�2(X, H)) of the union of all such C∗
s [X, r, H ′].

We will now show that stable uniform Roe algebras are also coarsely rigid
(which in turn will give us Theorem 1.4).

Theorem 4.1 Suppose X and Y are uniformly locally finite metric spaces such
thatC∗

s (X) andC∗
s (Y ) are isomorphic. Then X and Y are coarsely equivalent.

Before presenting the proof of Theorem 4.1, we need two lemmas. The first
is simple; we isolate it to keep the second lemma more transparent.

Lemma 4.2 Let X be a uniformly locally finite metric space, and let (pn)n∈N

be a sequence of orthogonal projections in C∗
s (X) such that

pA := SOT-
∑

n∈A

pn

is in C∗
s (X) for all A ⊆ N. Then, for all ε > 0, there is a finite-rank projection

p ∈ B(H) such that ‖(1�2(X,H) − 1�2(X) ⊗ p)pA‖ � ε for all A ⊆ N.

Proof s pN is in C∗
s (X), there is a finite rank projection p ∈ B(H) such that

‖(1�2(X,H)−1�2(X)⊗ p)pN‖ � ε. For brevity, define q := (1�2(X,H)−1�2(X)⊗
p). For any A ⊆ N, pA � pN; using this and the C∗-equality

‖qpA‖ = ‖qpAq‖1/2 � ‖qpNq‖1/2 = ‖qpN‖ � ε

	

Our next lemma is a stable version of Corollary 3.3. Notice that the defi-

nition of ε-r -approximality (Definition 1.8) naturally extends to operators in
B(�2(X, H)).

Lemma 4.3 Let X be a uniformly locally finite metric space and (pn)n∈N be a
sequence of orthogonal projections in C∗

s (X) such that pA := SOT-
∑

n∈A pn
is in C∗

s (X) for all A ⊆ N. Then, for all unit vectors ξ ∈ H with

inf
x∈X ‖pN(δx ⊗ ξ)‖ � 7/8,

we have that

inf
x∈X sup

n∈N

‖pn(δx ⊗ ξ)‖ > 0.
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Proof Fix a unit vector ξ ∈ H with

inf
x∈X ‖pN(δx ⊗ ξ)‖ � 7/8. (4.1)

Lemma 1.9 has a natural analog for stable Roe algebras (see [7, Lemma 3.14]),
whence there is r � 0 such that each pB is (1/8)-r -approximable.8 Lemma
4.2 gives a finite rank projection p ∈ B(H) such that

‖(1�2(X,H) − 1�2(X) ⊗ p)pB‖ < 1/8 (4.2)

for all B ⊆ N. Define Nr := supx∈X |Br (x)| and δ := (16Nr rank(p))−1. Fix
some x ∈ X , and define M := {n ∈ N | ‖pn(δx ⊗ ξ)‖ < δ}. As x is arbitrary
and δ is fixed independently of x , to complete the proof it suffices to show that
M �= N.
Let π := χBr (x) ⊗ p, and consider the vector measure

μ : P(M) → �2(Br (x)) ⊗ pH, A �→ πpA(δx ⊗ ξ).

As the R-dimension of �2(Br (x)) ⊗ pH is at most 2Nr rank(p), Lemma 2.1
and the choice of M give us a subset A of M such that ‖μ(A) − 1

2μ(M)‖ �
2Nrδ = 1/8. In other words, we have that

∥
∥
∥(1�2(X) ⊗ p)(χBr (x) ⊗ 1H )

(
pA − 1

2
pM

)
(δx ⊗ ξ)

∥
∥
∥ � 1

8
.

As pA − 1
2 pM = 1

2 pA − 1
2 pM\A is (1/8)-r -approximable, this implies that

∥
∥
∥(1�2(X) ⊗ p)

(
pA − 1

2
pM

)
(δx ⊗ ξ)

∥
∥
∥ � 2

8
.

Hence line (4.2) applied with B = A and B = M implies that

∥
∥
∥
(
pA − 1

2
pM

)
(δx ⊗ ξ)

∥
∥
∥ <

∥
∥
∥(1�2(X) ⊗ p)

(
pA − 1

2
pM

)
(δx ⊗ ξ)

∥
∥
∥ + 3

16

� 7

16
.

As pA = pA pM , this and Lemma 3.1 applied with v = pM(δx ⊗ ξ) imply
that

‖pM(δx ⊗ ξ)‖ < 7/8. (4.3)

8 We will actually only need that ‖(χC ⊗ 1H )pB(χD ⊗ 1H )‖ � ε for all C, D ⊆ X with
d(C, D) > r and all A ⊆ N.
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On the other hand, from our initial assumption on ξ from line (4.1)

‖(pM + pN\M)(δx ⊗ ξ)‖ � 7/8,

so the above and line (4.3) imply that pN\M is non-zero. Hence N \ M is
non-empty, as required. 	


Before presenting the proof of Theorem 4.1, we isolate a result in the proof
of [38, Theorem 6.1], which is the analog of Proposition 1.10 in the setting of
stable Roe algebras.

Proposition 4.4 Let X and Y be uniformly locally finite metric spaces and
� : C∗

s (X) → C∗
s (Y ) be a ∗-isomorphism. Suppose there are a finite-rank

projection p on H, a unit vector ξ ∈ H, and maps f : X → Y and g : Y → X
such that

inf
x∈X ‖�(χ{x} ⊗ pξ )(χ{ f (x)} ⊗ p)‖ > 0

and

inf
y∈Y ‖�−1(χ{y} ⊗ pξ )(χ{g(y)} ⊗ p)‖ > 0,

where pξ is the projection on H onto Cξ . Then, f is a coarse equivalence
with coarse inverse g. 	

Proof of Theorem 4.1 Let � : C∗

s (X) → C∗
s (Y ) be a ∗-isomorphism and let

� = �−1. We need to prove that X and Y are coarsely equivalent. Fix a unit
vector ξ ∈ H and let pξ be the projection of H onto Cξ . By Lemma 4.2, there
is a finite-rank projection p ∈ B(H) such that

‖(1�2(Y,H) − 1�2(Y ) ⊗ p)�(χ{x} ⊗ pξ )‖ <
1

8

for all x ∈ X . For each y ∈ Y , define py := �(χ{y} ⊗ p) and for each A ⊆ Y ,
define pA := SOT-

∑
y∈A py . Then

‖(1�2(X,H) − pY )(δx ⊗ ξ)‖ = ‖χ{x} ⊗ pξ − �(1�2(Y ) ⊗ p)(χ{x} ⊗ pξ )‖
= ‖�(χ{x} ⊗ pξ ) − (1�2(Y ) ⊗ p)�(χ{x} ⊗ pξ )‖
<

1

8

for all x ∈ X . Hence Lemma 4.3 gives δ > 0 and f : X → Y such that

‖�(χ{x} ⊗ pξ )(χ{ f (x)} ⊗ p)‖ = ‖�(χ{ f (x)} ⊗ p)(δx ⊗ ξ)‖ > δ,
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for all y ∈ Y .
By replacing δ by a smaller positive real and p by a larger finite-rank pro-

jection if necessary, a symmetric argument gives g : Y → X such that

‖�(χ{y} ⊗ pξ )(χ{g(y)} ⊗ p)‖ = ‖�(χ{g(y)} ⊗ p)(δy ⊗ ξ)‖ > δ

for all x ∈ X . By Proposition 4.4, f is a coarse equivalencewith coarse inverse
g. 	

Proof of Theorem 1.4 The implication (1) ⇒ (2) was established in [9, The-
orem 4]. Suppose now that C∗

u(X) and C∗
u(Y ) are Morita equivalent. Then,

the stable Roe algebras C∗
s (X) and C∗

s (Y ) must be isomorphic as shown in
[10, Theorem 1.2].9 It then follows from Theorem 4.1 that X and Y must be
coarsely equivalent. 	

Remark 4.5 The Roe algebra C∗(X) of a uniformly locally finite metric space
X is defined to be the norm closure of the set of finite propagation operators on
�2(X, H) such that all matrix entries axy are compact. Thus C∗(X) is defined
analogously to C∗

s (X), but where the condition that all matrix entries be sup-
ported on the same finite-dimensional subspace of H (up to an approximation)
is dropped. It is known that if X and Y satisfy suitable geometric assumptions
(see [25, Theorem A] for the state of the art) then the following are equivalent:

(1) X and Y are coarsely equivalent;
(2) C∗(X) and C∗(Y ) are isomorphic.

We do not know if this equivalence holds unconditionally: the techniques
introduced in this paper seem to need some sort of ‘uniform local finite-
dimensionality’, which is not satisfied in the Roe algebra case.

5 Uniform Roe algebras of coarse spaces

Theorem 1.12 is established in this section. For that, we recall the basics
of coarse spaces—we refer the reader to the monograph [33] for a detailed
treatment of coarse spaces. Given a set X and a family E of subsets of X × X ,
E is a coarse structure on X if

(1) �X = {(x, x) | x ∈ X} ∈ E ,
(2) E ∈ E and F ⊆ E implies F ∈ E ,
(3) E, F ∈ E implies E ∪ F ∈ E ,
(4) E ∈ E implies E−1 := {(y, x) | (x, y) ∈ E} ∈ E , and
(5) E, F ∈ E implies E ◦ F := {(x, y) | ∃z, (x, z) ∈ E ∧ (z, y) ∈ F} ∈ E .

9 See [24, Chapter 7] for a shorter proof.
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The pair (X, E) is then called a coarse space, and the elements of E are called
controlled sets (or entourages).A coarse space (X, E) is uniformly locally finite
if for each E ∈ E the cardinalities of the vertical and horizontal sections,

Ex := {(x, y) ∈ E | y ∈ X} and Ey := {(x, y) ∈ E | x ∈ X},

are uniformly bounded.
The motivating examples of coarse spaces are metric spaces. Indeed, if

(X, d) is a metric space, X is endowed with the coarse structure

Ed :=
{

E ⊆ X × X
∣
∣
∣ sup

(x,y)∈E
d(x, y) < ∞

}

.

A coarse space (X, E) is calledmetrizable if E = Ed for somemetric d on X . It
is well-known that (X, E) is metrizable if and only if E is countably generated
and connected10 (see [33, Theorem 2.55]). If (X, E) and (Y,F) are coarse
spaces and f : X → Y is a map, f is called coarse if ( f × f )[E] ∈ F for all
E ∈ E , and f is called expanding if ( f × f )−1[F] ∈ E for all F ∈ F . A map
f : X → Y which is both coarse and expanding is a coarse embedding.
The definition of uniform Roe algebras naturally extends to uniformly

locally finite coarse spaces: we say then that a = [axy] ∈ B(�2(X)) has
controlled support if supp(a) := {(x, y) | axy �= 0} is in E and the uniform
Roe algebra of (X, E), denoted by C∗

u(X, E), is the norm-closure of all oper-
ators on �2(X) with controlled support. For brevity, we often simply write
C∗
u(X) for C∗

u(X, E).
The goal of this section is to prove Theorem 1.12, which asserts that if

(X, E) and (Y,F) are uniformly locally finite coarse spaces such that (X, E)

is metrizable and C∗
u(X) and C∗

u(Y ) are ∗-isomorphic, then Y is countable and
X coarsely embeds into Y .
The countability of Y is straightforward.

Lemma 5.1 Suppose that X and Y are coarse spaces.
If C∗

u(X) and C∗
u(Y ) are ∗-isomorphic, then |X | = |Y |.

If C∗
u(X) embeds into C∗

u(Y ), then |X | � |Y |.
Proof The first part follows from the second, but it is also evident from the fact
that an isomorphism between uniform Roe algebras is spatially implemented
( [38, Lemma 3.1], see Lemma 1.7).

10 In this context, countably generated means that there is a countable collection S of subsets
of X × X such that E is the intersection of all coarse structures containing S, and connected
means that {(x, y)} ∈ E for all x, y ∈ X . The connectedness condition in the metric setting
means that metrics are not allowed to take infinite values.
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If C∗
u(X) embeds into C∗

u(Y ) then �∞(X) embeds into B(�2(Y )). Since
�∞(X) has |X | orthogonal nonzero projections, an orthonormal basis of �2(Y )

has cardinality at least |X |, hence |Y | � |X |. 	

On a related note, it is possible that C∗

u(X) embeds into C∗
u(Y ), where Y is

metrizable and X is a countable, nonmetrizable, coarse space; see [5, Propo-
sition 6.5].

Before proving the nontrivial part of Theorem 1.12, we need some pre-
liminary results. The following notation will be used: given a ∗-isomorphism
� : C∗

u(X) → C∗
u(Y ), x ∈ X , y ∈ Y , and η > 0, define

• Xy,η := {z ∈ X | ‖�−1(eyy)δz‖ � η}, and
• Yx,η := {z ∈ Y | ‖�(exx)δz‖ � η}.
The next lemma isolates a result in [5] which we will need later.

Lemma 5.2 [5, Lemma 4.7] Let (X, E) and (Y,F) be uniformly locally finite
coarse spaces, � : C∗

u(X) → C∗
u(Y ) be a ∗-isomorphism, and f : X → Y be

such that infx∈X ‖�(exx )δ f (x)‖ > 0. The following hold:

(1) If for all ε > 0 there is η > 0 such that

‖�(exx )(1�2(Y ) − χYx,η )‖ � ε,

for all x ∈ X, then f is expanding.
(2) If for all ε > 0 there is η > 0 such that

‖�−1(e f (x) f (x))(1�2(X) − χX f (x),η )‖ � ε,

for all x ∈ X, then f is coarse.

	

A simple application of Lemma 3.2 gives:

Corollary 5.3 Let X and Y be uniformly locally finite coarse spaces and
� : C∗

u(X) → C∗
u(Y ) be a ∗-isomorphism. If X is metrizable, then for all

ε > 0 there is η > 0 such that ‖�(exx )(1�2(Y ) − χYx,η )‖ � ε for all x ∈ X.

Proof Applying Lemma 3.2 to the projections (�−1(eyy))y∈Y , we have that

lim
η→0

inf
x∈X ‖�(exx )χYx,η‖ = lim

η→0
inf
x∈X ‖�−1(χYx,η )exx‖ = 1.

So, for all ε > 0 there is η > 0 such that for all x ∈ X we have that
‖�(exx )χYx,η‖ > 1− ε. As each �(exx ) is a rank 1 projection (remember that
� is rank-preserving), we have

1 = ‖�(exx )1�2(Y )‖2 = ‖�(exx )(1�2(Y ) − χYx,η )‖2 + ‖�(exx )χYx,η‖2,
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and the result follows. 	

We now present a technical lemma whose proof is inspired by [36, Proposi-

tion 3.1] (cf. [13, Proposition 2.4]). In a sense, this lemma shows that a kind of
operator norm localization property holds for arbitrary spaces (see [13, Sect.
2] for the definition of the operator norm localization property).

Lemma 5.4 Given ε, δ > 0, there is γ > 0 such that for all s, t > 0 there is
r > 0 for which the following holds: Let X be a uniformly locally finite metric
space, and let p, q, a ∈ B(�2(X)), where p is a projection and q is a rank 1
projection. If prop(q) � t , ‖p − a‖ < γ , prop(a) � s, and ‖pq‖ � δ, then
there is C ⊆ X with diam(C) � r such that ‖pχC‖ � 1 − ε.

Proof Fix ε, δ > 0. Pick k ∈ N such that (δ/2)1/k > 1 − ε. Pick a positive
γ < (δ/2)1/k −1+ε small enough such that ‖p−a‖ � γ implies ‖p−ak‖ �
δ/2 for any projection p and any operator a in B(�2(X)).

From now on, fix s, t > 0, and p, q, a ∈ B(�2(X)) as in the statement of
the lemma. By our choice of γ , ‖p − ak‖ � δ/2. Hence, as ‖pq‖ � δ, we
have that ‖akq‖ � δ/2. Therefore, a telescoping argument implies that

k−1∏

i=0

‖ai+1q‖
‖aiq‖ � δ

2

(notice that aiq �= 0 for all i’s above). So, there is j ∈ {0, . . . , k − 1} with

‖aa jq‖ � (δ/2)
1
k ‖a jq‖.

As q is a rank 1 projection, we can pick a unit vector ζ ∈ �2(X) such that
q = 〈·, ζ 〉ζ . As prop(q) � t , we have that diam(supp(ζ )) � t . Define ξ :=
a jζ/‖a jζ‖. As prop(a) � s, it follows that

prop(a j ) � 2 js + 2s � 2ks.

Therefore, we must have that diam(supp(ξ)) � 4ks + t .
At last, as ‖aξ‖ � (δ/2)1/k , it follows that ‖pξ‖ � (δ/2)1/k − γ . By our

choice of γ , this shows that ‖pξ‖ � 1− ε. The conclusion follows by letting
r = 4ks + t and C = supp(ξ). 	

Proof of Theorem 1.12 Let� : C∗

u(X) → C∗
u(Y ) be a ∗-isomorphism and, for

simplicity, let � = �−1. We need to prove that X coarsely embeds into Y . As
(X, d) is a metric space, Corollary 3.3 gives δ > 0 and f : X → Y such that
‖�(exx )δ f (x)‖ > δ for all x ∈ X .

By Lemma 5.2 and Corollary 5.3, f is expanding. So, we are left to show
that f is coarse.
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Let Z := f (X) and pick g : Z → X such that f (g(y)) = y for all y ∈ Z .
So, by our choice of f , it follows that

‖�(eyy)δg(y)‖ = ‖�(eg(y)g(y))eyy‖ = ‖�(eg(y)g(y))δ f (g(y))‖ > δ,

for all y ∈ Z .

Claim 5.5 For all ε > 0 there is r > 0 such that for all y ∈ Z , there is C ⊆ X
with diam(C) � r , and such that ‖�(eyy)χC‖ � 1 − ε.

Proof Fix ε > 0 and let γ > 0 be given by Lemma 5.4 for ε and δ. As
X is metrizable, Lemma 1.9 gives s > 0 such that each �(eyy) is γ -s-
approximable. Let r > 0 be given by Lemma 5.4 for s and t = 0. For each
y ∈ Z , pick az ∈ C∗

u(X) with prop(az) � s such that ‖�(eyy) − az‖ � γ .
Since ‖�(eyy)eg(y)g(y)‖ > δ for all y ∈ Z , the result now follows from
Lemma 5.4. 	

Claim 5.6 For all ε > 0, there is η > 0 such that ‖�(eyy)χXy,η‖ � 1− ε, for
all y ∈ Z .

Proof This follows from the proof of [43, Lemma 6.7] or, equivalently, and
with a more similar terminology, from [4, Lemma 7.4]. Indeed, in [4, Lemma
7.4] the metric spaces are assumed to have the operator norm localization
property. However, an inspection of the proof reveals that the argument holds
under the assumption that, for all ε > 0, there is r > 0 such that, for each
z ∈ Z , there is C ⊆ X with diam(C) � r satisfying ‖�(eyy)χC‖ � 1 − ε.
This statement is nothing else but Claim 5.5. 	


As each �(eyy) has rank 1, Claim 5.6 implies that for all ε > 0, there is
η > 0 such that ‖�(eyy)(1�2(X) − χXy,η )‖ � ε for all y ∈ Z (cf. the proof of
Corollary 5.3). By Lemma 5.2, we conclude that f is coarse. 	
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