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Abstract. It is well known that CHn has the structure of a solvable
Lie group with left invariant metric of constant holomorphic sectional
curvature. In this paper we give the full classification of all possible left
invariant Riemannian metrics on this Lie group. We prove that each of
those metrics is of constant negative scalar curvature, only one of them
being Einstein (up to isometry and scaling).
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Introduction

Since CHn is a symmetric space of negative sectional curvature, in light of the
classical results of Heintze [11,12], it can be viewed as a connected solvable
real Lie group with a left invariant metric. This group, denoted by CHn,
is the noncompact part of the Iwasawa decomposition SU(1, n) = KAN of
the isometry group of the complex hyperbolic space. The compact part is
isomorphic to U(n), the nilpotent part N is Heisenberg group H2n−1, and
the abelian part is one-dimensional. The semidirect product CHn = AN acts
simply transitively on CHn giving it a structure of a Lie group with the
left invariant metric inherited from CHn. Now an interesting question arises:
what are all the other possible left invariant Riemannian metrics on this Lie
group?

There are two standard approaches to the classification problem based
on the moduli spaces of the left invariant Riemannian metrics on a given
Lie group. One is to fix Lie algebra commutators, then consider the space of
all possible left invariant metrics and find the simplest representatives under
the action of the automorphism group. This approach we use here to classify
all non-isometric left invariant Riemannian metrics on CHn. Since CHn is
completely solvable and due to Alekseevsky’s results [1,2], isometry classes
of the left invariant metrics are exactly the orbits of the automorphism group
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acting on the space of the left invariant metrics. Slightly different but equiv-
alent approach is to fix an orthonormal (or pseudo-orthonormal) base and
classify all possible Lie brackets up to the action of the automorphism group.
In the space of all bilinear skew-symmetric forms the Jacobi identity defines
the hypersurface of admissible Lie brackets. Once again the isometry classes
constitute the orbits of the automorphism group. Both approaches are used
by Lauret in search for distinguished left invariant metrics (Ricci solitons) on
nilpotent Lie groups [19]. The first method is systematically outlined in [14],
and the second one in [10]. Tamaru et al. called these methods Milnor-type
theorems in reference to the groundwork of Milnor [21] who classified all left
invariant Riemannian metrics on three-dimensional unimodular Lie groups.
Although Milnor’s method relies on the existence of the cross product in di-
mension three, lots of results have been obtained later for Riemannian and
Lorentzian cases in dimensions three and four (see for example [3–7,18,23])
as well as for dimension four with neutral signature [24,25].

The results in an arbitrary dimension are more recent. All the left in-
variant Riemannian and Lorentzian metrics on Heisenberg group have been
classified in [26]. Pseudo-Riemannian metrics of the real hyperbolic space
modelled as a Lie group have been explored both by the variation of Lie
brackets [16] and by the variation of inner products [27]. It has been shown
[17] that the Euclidean space, the real hyperbolic space and H3 × R

n (prod-
uct of three-dimensional Heisenberg group and Euclidean space) are the only
connected and simply-connected Lie groups admitting unique left invariant
Riemannian metric up to scaling and isometry. Lorentzian metrics on H3×R

n

have been classified in [15].
Algebraic Ricci solitons on nilpotent and solvable Lie groups are in-

troduced by Lauret [19,20]. He proved that a solvable Lie group admits at
most one left invariant Ricci soliton up to isometry and scaling. Since CHn

is completely solvable, one can conclude that the Einstein metric of CHn is
the only Riemannian left invariant Ricci soliton on CHn. This is an exam-
ple of codimension one Ricci soliton subgroups of solvable Iwasawa groups,
recently classified in [8]. Algebraic Ricci solitons on Heisenberg group have
been classified in [22].

This paper is organized as follows.
In Sect. 1 we introduce basic notation and define metric Lie groups and

algebras together with isometry classes. We also give a brief review of some
concepts of the symplectic linear algebra.

Theorem 2.1 of Sect. 2, the classification of non-isometric Riemannian
left invariant metrics on CHn, is the main result of this paper. We describe the
Lie algebra’s group of automorphisms Aut(chn) in Lemma 2.1 and Corollary
2.1. It contains the symplectic group Sp(2(n−1), R) that plays an important
role in the proof of the classification theorem by permitting a diagonalization
with symplectic eigenvalues.

In Sect. 3 we investigate geometrical properties of the Lie group CHn

equipped with various left invariant metrics g(p, x, σ, β). This provides a
whole class of Riemannian solvmanifolds that could be interesting for further
research. The curvature tensor is given both explicitly and on the exterior
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algebra. None of the metrics is flat but all of them have a constant negative
sectional curvature. We prove there is exactly one Einstein metrics up to
isometry and scaling and see it is the only Ricci soliton left invariant metric
on CHn.

1. Preliminaries

The complex hyperbolic space is a non-compact rank-one symmetric space
of negative sectional curvature:

CHn = SU(1, n)/S(U(1) × U(n)).

Therefore, it is a solvmanifold, i.e. it can be represented as a connected solv-
able Lie group with a left invariant metric [11,12]. This group is a semidirect
product of the abelian and the nilpotent part (Heisenberg group) of the Iwa-
sawa decomposition of its isometry group:

CHn = R � H2n−1.

The Lie algebra chn of the Lie group CHn is a semidirect product of the
abelian and the Heisenberg algebra

chn = R � h2n−1.

It is spanned by vectors X,Y1, . . . , Yn−1, Z1, . . . , Zn−1,W with nonzero com-
mutators:

[X,Yi] =
1
2
Yi, [X,Zi] =

1
2
Zi, [X,W ] = W, [Zj , Yi] = δijW,

i, j ∈ {1, . . . , n − 1}. (1)

This algebra is 3-step solvable. The first derived algebra is Heisenberg h2n−1

and the second is the one-dimensional algebra spanned by the vector W.
Using the identification C

n ∼= R
2n:

(z1, . . . , zn) �→ (x1, . . . , xn, y1, . . . , yn), zk = xk + iyk, k ∈ {1, . . . , n},

the multiplication by i on C
n induces the standard complex structure on R

2n

given by

Jn =
(

0 In

−In 0

)
,

where In is the n × n identity matrix.
The standard symplectic form in vector space R

2n is

ω(u, v) = uT Jnv, u, v ∈ R
2n.

The ω-preserving group of all linear transformations of R
2n is the symplectic

group

Sp(2n, R) = {F ∈ Gl2n(R) | ω(Fu, Fv) = ω(u, v)}
= {F |FT JnF = Jn}.

It is related to the unitary group

U(n) = {U ∈ GL(n, C) | UU∗ = In}
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by

U(n) ∼= Sp(2n, R) ∩ SO(2n).

The following statements of symplectic geometry will be used for the
classification of metrics on the Lie group CHn. For a more detailed review on
the topic see [9] and [28].

Theorem 1.1. (Williamson diagonal form) Let S be a positive-definite sym-
metric real 2n × 2n matrix.

(i) There exists M ∈ Sp(2n, R) such that

D = MT SM =
(

σ 0
0 σ

)
, σ = diag(σ1, . . . , σn).

(ii) The sequence σ1, . . . , σn does not depend, up to a reordering of its terms,
on the choice of M diagonalizing S.

With the ordering convention σ1 ≥ σ2 ≥ · · · ≥ σn > 0, the decreasing
sequence (σ1, . . . , σn) is called the symplectic spectrum of S and is denoted by
Spec(S). The elements of Spec(S) are the symplectic eigenvalues. The diago-
nal matrix D with the ordering convention above is called Williamson diag-
onal form of the symmetric matrix S. The elements of symplectic spectrum
are symplectic eigenvalues of S. The multiplicity of the symplectic eigenvalue
σi is the number of times it is repeated in σ.

Proposition 1.1. [9] Symplectic spectrum is a symplectic invariant:

Spec(MT SM) = Spec(S), for every M ∈ Sp(2n, R).

Proposition 1.2. [9] Assume that M and M ′ are two elements of Sp(2n, R)
such that

S = MT DM = M ′T DM ′,

where D is the Williamson diagonal form of symmetric matrix S. Then
MM ′−1 ∈ U(n).

Corollary 1.1. If M ∈ Sp(2n, R) preserves D, that is MT DM = D, then
M ∈ U(n).

The following results od Alekseevsky enable us to classify all non-
isometric Riemannian metrics on the completely solvable Lie group CHn.

Definition 1.1. Two metric Lie algebras (i.e. Lie algebras equipped with inner
products) are
(a) isometric if there exists a homomorphism of vector spaces that preserves
curvature tensor and its covariant derivatives.
(b) isomorphic if they are isometric and the isometry preserves Lie algebra
commutators (i.e. they are isomorphic as Lie algebras as well).

The relation between the isometry of metric Lie algebras and the isom-
etry of corresponding metric Lie groups (Lie group with the left invariant
metric) is given by:
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Lemma 1.1. [2] Two metric Lie algebras are isometric if and only if the
corresponding Riemannian spaces are isometric.

Since chn is completely solvable, it is possible to classify all non-isometric
inner products thanks to the following lemma:

Lemma 1.2. [1,2] Isometric completely solvable metric Lie algebras are iso-
morphic.

2. Classification of Left Invariant Riemannian Metrics on CHn

Every inner product on a Lie algebra uniquely determines a left invariant
metric on a Lie group by left translations. Therefore, the problem of classifi-
cation of all non-isometric left invariant Riemannian metrics on the Lie group
CHn is equivalent to the classification of all non-isometric positive definite
inner products on the Lie algebra chn.

In a fixed basis with commutators (1), inner products are represented by
the symmetric positive definite matrices S. A set of orbits of an automorphism
group acting of the space of inner products is called moduli space of left
invariant metrics (see [14]). Every orbit is in one-to-one correspondence with
an equivalence class of the action S ∼ FT SF , F ∈ Aut(chn). Since chn is
completely solvable, Lemmas 1.1 and 1.2 ensure that isometry classes are
precisely the orbits of the automorphism group. Thus the classification of
non-isometric metrics is equivalent to finding the simplest representatives of
these orbits.

Lemma 2.1. The automorphism group of the Lie algebra chn is

Aut(chn) =

{⎛
⎝1 0 0

u M 0
a vT λ

⎞
⎠ |M ∈ GL(2(n − 1), R), MT Jn−1M

= λJn−1, v ∈ R
2(n−1), a, λ ∈ R, λ �= 0, u =

1
2λ

MJn−1v

}
. (2)

Proof. Fix a basis (X,Y1, . . . , Yn−1, Z1, . . . , Zn−1,W ) with commutators of
the form (1). Every automorphism F ∈ Aut(chn) must preserve commutators
by definition, i.e.

[FX1, FX2] = F [X1,X2], X1,X2 ∈ chn.

It also preserves the derived series. In the chn case, its first derived algebra is
Heisenberg algebra spanned by Y1, . . . , Yn−1, Z1, . . . , Zn−1,W and its second
derived algebra is one-dimensional spanned by W. This directly simplifies
automorphisms represented in the block matrix form:

F =

⎛
⎝1 0 0

u M 0
a vT λ

⎞
⎠ .



232 Page 6 of 18 A. Dekić et al. MJOM

Furthermore, the commutators

[FZj , FYi] = δijFW, [FYi, FYj ] = 0, [FZi, FZj ]
= 0, i, j ∈ {1, . . . , n − 1}

impose a restriction on M : MT Jn−1M = λJn−1.
Finally, after a short calculation the commutators

[FX,FYi] =
1
2
FYi, [FX,FZi] =

1
2
FZi, i, j ∈ {1, . . . , n − 1},

imply a relation of vectors u and v: u = 1
2λMJn−1v. �

Note that Aut(chn) is generated by three types of automorphisms: di-
agonal, symplectic and generalized translations.

Corollary 2.1. The identity component of the automorphism group of the Lie
algebra chn is a semidirect product

Aut0(chn) = D � (Sp � T ),

where

D =

⎧⎨
⎩Fd(α) =

⎛
⎝1 0 0

0 αI 0
0 0 α2

⎞
⎠ |α > 0

⎫⎬
⎭ ,

Sp =

⎧⎨
⎩FSp

(M) =

⎛
⎝1 0 0

0 M 0
0 0 1

⎞
⎠ |MT Jn−1M = Jn−1

⎫⎬
⎭ ∼= Sp(2(n − 1), R),

T =

⎧⎨
⎩Ft(v, a) =

⎛
⎝ 1 0 0

1
2 Jn−1v I 0

a vT 1

⎞
⎠ | a ∈ R, v ∈ R

2(n−1)

⎫⎬
⎭ .

Theorem 2.1. (Classification theorem) All positive definite inner products on
the Lie algebra chn in some basis with commutators (1) are represented by
the matrices

S(p, x, σ, β) =

⎛
⎜⎜⎝

p xT 0 0
x σ 0 0
0 0 σ 0
0 0 0 β

⎞
⎟⎟⎠ , (3)

where p, β > 0, x = (x1, . . . , xn−1)T ∈ R
n−1, xi ≥ 0,

σ = diag(σ1, . . . , σn−2, 1), σ1 ≥ · · · ≥ σn−2 ≥ 1.
If all eigenvalues of σ are distinct then all inner products (3) are non-

isometric. If m1, . . . , mk+1 are the multiplicities of the eigenvalues of the
matrix σ, i.e. σ = diag(σ̂1, . . . , σ̂1︸ ︷︷ ︸

m1

, . . . σ̂k, . . . , σ̂k︸ ︷︷ ︸
mk

, 1, . . . , 1︸ ︷︷ ︸
mk+1

), m1 + · · ·+mk+1 =

n − 1, then non-isometric inner products are represented by (3) with

x = (x̂1, 0, . . . , 0︸ ︷︷ ︸
m1−1

, x̂2, 0, . . . , 0︸ ︷︷ ︸
m2−1

. . . , x̂k+1, 0, . . . , 0︸ ︷︷ ︸
mk+1−1

)T ∈ R
n−1, x̂i ≥ 0.
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Proof. We are looking for the simplest representatives of the orbits of Aut
(chn) acting on the space of positive definite symmetric matrices. Consider
an arbitrary positive definite symmetric 2n × 2n matrix S in a block matrix
form

S =

⎛
⎝p1 zT

0 q
z0 S̄ w
q wT β1

⎞
⎠ .

A generalized translation Ft1(− 1
β1

w, 0) ∈ T simplifies S to

S1 = FT
t1SFt1 =

⎛
⎝p2 zT

1 q1
z1 S̄1 0
q1 0 β1

⎞
⎠ .

Since S1 is positive definite, S̄1 is also a positive definite (n − 2) × (n −
2) matrix. Thus S̄1 allows Wiliamson’s diagonalization (Theorem 1.1) by a
symplectic matrix M1. We choose FSp2(M1) ∈ Sp to obtain

S2 = FT
Sp2

S1FSp2 =

⎛
⎜⎜⎝

p2 zT
1 M1 q1

MT
1 z1 MT

1 S̄1M1 0

q1 0 β1

⎞
⎟⎟⎠ =

⎛
⎝p2 zT

2 q1
z2 Dσ̄ 0
q1 0 β1

⎞
⎠ ,

where Dσ̄ = diag(σ̄1, . . . , σ̄n−1, σ̄1, . . . , σ̄n−1) and σ̄1 ≥ · · · ≥ σ̄n−1 > 0
form the symplectic spectrum of S̄1. Now we choose a simple translation
Ft3(0,− q1

β1
) ∈ T to obtain

S3 = FT
t3S2Ft3 =

⎛
⎜⎝

p2 − q2
1

β1
zT
2 0

z2 Dσ̄ 0
0 0 β1

⎞
⎟⎠ =

⎛
⎝ p zT

2 0
z2 Dσ̄ 0
0 0 β1

⎞
⎠ .

This is further simplified by a diagonal automorphism Fd4((σ̄n−1)− 1
2 ) ∈ D

S4 = FT
d4

S3Fd4 =

⎛
⎝ p αzT

2 0
αz2 α2Dσ̄ 0
0 0 α2β1

⎞
⎠ =

⎛
⎝p zT 0

z D 0
0 0 β

⎞
⎠ ,

where

D = diag(
σ̄1

σ̄n−1
, . . . ,

σ̄n−2

σ̄n−1
, 1,

σ̄1

σ̄n−1
, . . . ,

σ̄n−2

σ̄n−1
, 1)

= diag(σ1, . . . , σn−2, 1, σ1, . . . , σn−2, 1)

= diag(σ, σ).

Now consider a symplectic matrix M that preserves Williamson’s diag-
onal form MT DM = D. Then (Corollary 1.1)

M ∈ U(n − 1) ∼= Sp(2(n − 1), R) ∩ SO(2(n − 1)). (4)

Since M is orthogonal, i.e. MT = M−1, it follows that DM = MD. M and
D are both diagonalizable and they commute, therefore they are simultane-
ously diagonalizable and they have same eigenspaces. Thus M must preserve
eigenspaces of each symplectic eigenvalue from Spec(D).
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• Consider first the most general case when all symplectic eigenvalues of
D are distinct. Then corresponding eigenspaces are two-dimensional and
can be viewed as the complex line C. Since Sp(2) = SO(2) = U(1), the
restriction of M on each two-dimensional eigenspace is a rotation in C.
When we identify R

2(n−1) ∼= C
n−1 by

zT = (x̄1, . . . , x̄n−1, ȳ1, . . . , ȳn−1) ∼= (z1, . . . , zn−1),

the transformation

(z1, . . . , zn−1) �→ (eiθ1z1, . . . , eiθn−1zn−1)

is symplectic for any choice of angles θ = (θ1, . . . , θn−1). If we choose θ
such that

eiθkzk = xk > 0, k ∈ {1, . . . , n − 1},

the transformation becomes

zT = (x̄1, . . . , x̄n−1, ȳ1, . . . , ȳn−1) �→ x̂T

= (x1, . . . , xn−1, 0, . . . , 0) = (xT , 0).

To represent the last transformation by a block matrix we define diag-
onal matrices

A(θ) = diag(cos θ1, . . . , cos θn−1), B(θ) = diag(sin θ1, . . . , sin θn−1).

Thus, the block matrix is

M =
(

A(θ) −B(θ)
B(θ) A(θ)

)
.

Using FSp5(M) ∈ Sp we get the final form:

S5 = F T
Sp5S4FSp5 =

⎛
⎝ p zT M 0

MT z MT DM 0
0 0 β

⎞
⎠ =

⎛
⎝p x̂T 0

x̂ D 0
0 0 β

⎞
⎠ =

⎛
⎜⎜⎝

p xT 0 0
x σ 0 0
0 0 σ 0
0 0 0 β

⎞
⎟⎟⎠

• If the multiplicity of an symplectic eigenvalue of D is mi, then we can
identify the corresponding 2mi-dimensional eigenspace with C

mi via

(z1, . . . zmi
) ∼= (x̄1, . . . , x̄mi

, ȳ1, . . . , ȳmi
).

Since M is unitary (4), it’s action on this eigenspace corresponds to the
action of U(mi) on C

mi . U(mi) acts isometrically transitively on C
mi ,

hence it can map any 2mi-dimensional vector (x̄1, . . . , x̄mi
, ȳ1, . . . , ȳmi

)
to the vector of the same length (x̂i, 0, . . . , 0), i.e.

(z1, . . . zmi
) ∼= (x̄1, . . . , x̄mi

, ȳ1, . . . , ȳmi
) �→ (x̂i, 0, . . . , 0),

x̂2
i = x̄2

1 + · · · + x̄2
mi

+ ȳ2
1 + · · · + ȳ2

mi
.

The same method applied to all the eigenspaces simplifies the vector x
to:

x = (x̂1, 0, . . . , 0︸ ︷︷ ︸
m1−1

, x̂2, 0, . . . , 0︸ ︷︷ ︸
m2−1

. . . , x̂k+1, 0, . . . , 0︸ ︷︷ ︸
mk+1−1

)T ∈ R
n−1, x̂i ≥ 0. (5)
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Now we check when two different matrices of the form (3) correspond
to non-isometric inner products. Let S(p, x, σ, β) and S′(p′, x′, σ′, β′) be two
matrices from the same orbit

S′ = FT SF, F =

⎛
⎝1 0 0

u M̄ 0
a vT λ

⎞
⎠ ∈ Aut(chn),

with x and x′ of the form (5). We shall prove that S = S′.
If we denote z = (x, 0) and z′ = (x′, 0) we have

S′ =

⎛
⎝p′ z′T 0

z′ D′ 0
0 0 β′

⎞
⎠

=

⎛
⎝p + uT z + (zT + uT D)u + a2β (zT + uT D)M̄ + aβvT aβλ

M̄T (z + Du) + aβv M̄T DM̄ + βvvT βλv
aβλ βλvT βλ2

⎞
⎠

Since β �= 0 and λ �= 0, we immediately get a = 0, v = 0 (thus u = 0), so the
translatory part of the automorphism F is identity and

S′ =

⎛
⎝ p zT M̄ 0

M̄T z M̄T DM̄ 0
0 0 βλ2

⎞
⎠ .

Therefore p′ = p and D′ = M̄T DM̄ .
Assume λ > 0 and choose α > 0 such that

F = diag(1, M̄ , λ) = diag(1, αM,α2).

If λ < 0 the procedure is analogous with the same result. The only difference
is −α2 as the last entry of the previous matrix. Now we have

D′ = M̄T DM̄ = α2MT DM.

The symplectic spectrum (σ1, . . . , σn−2, 1) is a symplectic invariant by Propo-
sition 1.1 and D = diag(σ, σ) is a sorted Williamson diagonal form. MT DM
has the same spectrum as D and it is proportional to a sorted diagonal ma-
trix D′ = diag(σ′, σ′). Hence MT DM is diagonal, has the same eigenvalues
as D, both are sorted, therefore MT DM = D. Thus we have D′ = α2D, i.e.

diag(σ′
1, . . . , σ

′
n−2, 1, σ′

1, . . . , σ
′
n−2, 1) = α2 diag(σ1, . . . , σn−2, 1, σ1, . . . , σn−2, 1).

Consequently α2 = 1, so α = 1 and

S′ =

⎛
⎝ p zT M 0

MT z D 0
0 0 β

⎞
⎠ . (6)

Therefore, β′ = β and σ′ = σ.
As shown before, M is an unitary matrix that preserves eigenspaces

of each symplectic eigenvalue from Spec(D). If M̃ is restriction of M to
the eigenspace C

mi then (6) implies (x̂′
i, 0, . . . , 0) = M̃(x̂i, 0, . . . , 0). Since

the unitary group preserves the length of a vector, it follows that x̂′
i = x̂i.

Therefore we have proven x = x′ and consequently S = S′. �
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Remark 2.1. In the following, we will use the simpler notation x = (x1, . . . ,
xn). Strictly speaking, the exact relation of indices is
x̂1 = x1, x̂i = x∑i−1

j=1 mj+1, i ∈ {2, . . . , k}, with all the rest xj being 0.

Remark 2.2. Every inner product on a Lie algebra uniquely determines a
left invariant metric on a Lie group. Thus the previous theorem gives us a
classification of all non-isometric Riemannian metrics on the Lie group CHn.

3. Curvature Properties of Lie Group CHn

We have classified all non-isometric left invariant Riemannian metrics on
CHn and now we will show some useful curvature properties of these metrics.
Let (X,Y1, . . . , Yn−1, Z1, . . . , Zn−1,W ) be a left invariant basis of chn with
commutators (1). Denote by g(p, x, σ, β) a left invariant metric defined by an
inner product S(p, x, σ, β) in the basis given above.

Let ∇ be its Levi–Civita connection. For any left invariant vector fields
X1, X2, X3 the Koszul’s formula reduces to

2g(∇X1X2,X3) = g([X1,X2],X3) − g([X2,X3],X1) + g([X3,X1],X2). (7)

From Koszul’s formula (7) using the fact that ∇ is torsion-free, i.e.
∇X1X2 − ∇X2X1 = [X1,X2], we find all non-zero covariant derivatives:

∇XX =
1
2z

(
n−1∑
i=1

x2
i

σi
X − p

n−1∑
i=1

xi

σi
Yi

)
, ∇XYi =

xi

2z

(
X −

n−1∑
k=1

xk

σk
Yk

)
,

∇Yi
X =

xi

2z

(
X −

n−1∑
k=1

xk

σk
Yk

)
− 1

2
Yi, ∇Yi

Yj =
δijσi

2z

(
X −

n−1∑
k=1

xk

σk
Yk

)
,

∇Yi
Zj = −δij

2
W = −∇Zj

Yi, ∇Yi
W =

β

2σi
Zi = ∇W Yi, ∇Zi

X = −1
2
Zi,

∇Zi
Zj =

δijσi

2z

(
X −

n−1∑
k=1

xk

σk
Yk

)
, ∇W W =

β

z

(
X −

n−1∑
i=1

xi

σi
Yi

)
,

∇W X = −W, ∇W Zi =
β

2zσi

(
xiX − xi

n−1∑
k=1

xk

σk
Yk − zYi

)
= ∇Zi

W,

where z = p − ∑n−1
i=1

x2
i

σi
and σn−1 = 1. The Riemann curvature operator for

all X1,X2 ∈ chn is defined by

R(X1,X2) = ∇X1∇X2 − ∇X2∇X1 − ∇[X1,X2].

Expressions for the Riemann curvature operator are quite complex so it is
convenient to present them in terms of wedge products (see Appendix for
the explicit formulas). Since we work with left invariant basis, we have a
natural identification TpCHn ∼= chn for any p ∈ CHn. Using the symme-
try g(R(X1,X2)X3,X4) = −g(R(X1,X2)X4,X3) we know that the Riemann
curvature operator belongs to the algebra of skew-symmetric endomorphisms
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so(g). Accordingly, we identify the skew-symmetric endomorphisms so(g)
with 2-vectors Λ2TpCHn by

(X1 ∧ X2)(X3) := g(X2,X3)X1 − g(X1,X3)X2,

for any X3 ∈ TpCHn. Since R(X1,X2) = −R(X2,X1) the curvature tensor
can be regarded as a skew-symmetric operator on the space of 2-vectors

R : Λ2TpCHn → Λ2TpCHn ∼= so(g), R(X1 ∧ X2) := R(X1,X2).

Lemma 3.1. The Riemann curvature operator R : Λ2chn → Λ2chn is given
by:

R(X,Yi) = − 1
4z

X ∧ Yi − 1
4σi

Zi ∧ W,

R(X,Zi) =
1

4zσi

(
− σiX ∧ Zi − 2xiX ∧ W + xi

∑
l

xl

σl
Yl ∧ W + zYi ∧ W

)
,

R(X,W ) =
1
2z

[
− 2X ∧ W +

∑
l

xl

σl
Yl ∧ W

+β
∑
m

1
σ2

m

(
− 3

2
xmX ∧ Zm + xm

∑
l

xl

σl
Yl ∧ Zm + zYm ∧ Zm

)]
,

R(Yi, Yj) = − 1
4z

Yi ∧ Yj − β

4σiσj
Zi ∧ Zj ,

R(Yi, Zj) =
1

4zσiσj

[
− xjσiYi ∧ W + 2δijσiσj

(
X ∧ W −

∑
l

xl

σl
Yl ∧ W

)

−σiσjYi ∧ Zj + 2δijσiσjβ
∑
m

[
1

σ2
m

(
xmX ∧ Zm

−xm

∑
l

xl

σl
Yl ∧ Zm − zYm ∧ Zm

)]

+β

(
xjX ∧ Zi − xj

∑
l

xl

σl
Yl ∧ Zi − zYj ∧ Zi

)]
,

R(Yi,W ) =
β

4zσi

[
xi

σi

(
− X ∧ W +

∑
l

xl

σl
Yl ∧ W

)
+

(
z

σi
− 2σi

β

)
Yi ∧ W

+X ∧ Zi −
∑

l

xl

σl
Yl ∧ Zi − σi

∑
l

xl

σ2
l

Yi ∧ Zl

]
,

R(Zi, Zj) =
1

4zσiσj

[
(xiσjZj ∧ W − xjσiZi ∧ W ) − σiσjZi ∧ Zj

+β

(
xiX ∧ Yj − xjX ∧ Yi
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−
∑

l

xl

σl

(
xiYl ∧ Yj − xjYl ∧ Yi) − zYi ∧ Yj

)]
,

R(Zi,W ) =
β

4z

(
− 1

σi
X ∧ Yi +

1
σi

∑
l

xl

σl
Yl ∧ Yi −

∑
l

xl

σ2
l

Zl ∧ Zi

+

(
z

σ2
i

− 2
β

)
Zi ∧ W +

xi

σi

∑
l

xl

σ2
l

Zl ∧ W

)
.

Proof. For example, let’s prove the formula for R(Zi,W ). Start by applying
this operator to the vector field X by definition

R(Zi,W )X = ∇Zi
∇W X − ∇W ∇Zi

X − ∇[Zi,W ]X

=
β

4zσi

(
−xiX + xi

∑
l

xl

σl
Yl + zYi

)
.

When we apply all wedge products from the standard basis of Λ2TpCHn to
X we see that the only basis elements that give vector fields X and Yi in the
result are (X∧Yi)X = xiX−pYi and (Yi∧Yj)X = xjYi−xiYj . Hence, we have
a linear combination R(Zi,W )X = μ(X ∧Yi)X +η(Yl ∧Yi)X. Consequently

β

4zσi

(
−xiX + xi

∑
l

xl

σl
Yl + zYi

)
= μ(xiX − pYi) + η(xlYi − xiYl).

Comparing the coefficients by the vector X we obtain μ = − β
4zσi

. When we

substitute μ and p =
∑

l
x2
l

σl
+ z in the previous equation, it gets simplified

to

β

4zσi

(
xi

∑
l

xl

σl
Yl + zYi

)
= − β

4zσi
(−

∑
l

x2
l

σl
+ z)Yi + η(xlYi − xiYl).

As a result we find η = β
4zσi

∑
l

xl

σl
. Therefore we have represented

R(Zi,W )X = − β

4zσi
(X ∧ Yi)(X) +

β

4zσi

∑
l

xl

σl
(Yl ∧ Yi)(X)

in terms of wedge product. In this way we have found the first two summands
in the expression of R(Zi,W ). Repeating the procedure by applying the op-
erator R(Zi,W ) to vectors Yj , Zj , W one will similarly find the coefficients
with the remaining summands Zl ∧ Zi, Zi ∧ W and Zl ∧ W .

All the remaining curvature operators have been found by analogous
lengthy calculations. �

Using the definitions of the Ricci curvature tensor and scalar curvature

Ric(X1,X2) = Tr(X �→ R(X,X1)X2), X1,X2 ∈ chn

τ =
∑

gijrij ,

we calculate them directly:

Lemma 3.2. For all left invariant Riemannian metrics g(p, x, σ, β)
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(i) the Ricci curvature tensor in a basis with commutators (1) is

Ric = − 1

2z

⎛
⎜⎜⎜⎜⎝

np+z nxT 0 0
nx nσ+βzσ−1 0 0

0 0 nσ+βzσ−1+βvvT (2n + 1)β
2
v

0 0 (2n + 1)β
2
vT 2nβ−β2

∑n−1
k=1

1
σ2
k

(
x2
k

σk
+z

)

⎞
⎟⎟⎟⎟⎠ , (8)

where
x = (x1, . . . , xn−1)T , σ = diag(σ1, . . . , σn−2, 1), σn−1 = 1,
v = σ−1x =

(
xi

σi

)
, z = p − ∑n−1

i=1
x2
i

σi
.

(ii) CHn has a constant negative scalar curvature:

τ = − 1
2z

[
2n2 + n + 1 + β

n−1∑
i=1

1
σ2

i

(
z +

x2
i

σi

)]
.

Proof. The formulas follow directly from the calculated Levi–Civita connec-
tion and Riemann curvature operators. Since σi ≥ 1, i ∈ {1, . . . , n − 1}, and
β, z > 0, the scalar curvature is strictly negative. �

Remark 3.1. This is consistent with Milnor’s result ([21], Theorem 3.1) that
a scalar curvature of a non-flat left invariant Riemannian metric on a solvable
Lie group is strictly negative.

Remark 3.2. Ricci negative metrics on CHn exist. For example, if xi = 0 and
2n − pβ

∑n−1
i=1

1
σ2
i

> 0, all eigenvalues are negative. In that case

Ric = − 1
2p

diag

(
(n + 1)p, u, u, 2nβ − β2p

n−1∑
k=1

1
σ2

k

)
,

where u =
(
nσ1 + βp

σ1
, . . . , nσn−2 + βp

σn−2
, n + βp

)
∈ R

n−1.

Definition 3.1. A metric is Einstein if its Ricci tensor is proportional to the
metric tensor.

Theorem 3.1. The left invariant Riemannian metric g(p, x, σ, β) on CHn is
Einstein if and only if the following conditions are satisfied:

pβ = 1, xi = 0, σi = 1, i ∈ {1, . . . , n − 1},

i.e. the corresponding inner product is

S = diag
(

p, 1, . . . , 1,
1
p

)
. (9)

This is the standard Kähler metric of the complex hyperbolic space CHn,
unique up to isometry and scaling.

Proof. Direct comparison of the Ricci tensor (8) with the metric tensor (3)
shows that Ric = kg holds for some constant k iff pβ = 1 and (∀i) xi =
0, σi = 1. The resulting metrics (9) is the standard Kähler metric of the
complex hyperbolic space with constant holomorphic sectional curvature − 1

p .
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Now we check the uniqueness up to scaling. Consider a scaled metric

qS = diag
(

pq, q, . . . , q,
q

p

)
, q > 0.

The action of a diagonal automorphism F = diag
(
1, 1√

q , . . . , 1√
q , 1

q

)
∈ D

FT (qS)F = diag
(

pq, 1, . . . , 1,
1
pq

)

shows that qS is in the orbit of the standard Kähler metric of the complex
hyperbolic space with constant holomorphic sectional curvature − 1

pq . �

Remark 3.3. This is consistent with Herber [13], Theorem E: Any solvable
Lie group S admits at most one left invariant standard Einstein metric up
to isometry and scaling. If it does, then S does not carry any nonstandard
Einstein metric and hence the Einstein metric is essentially unique.

A complete Riemannian metric g on a manifold M is called a Ricci
soliton if

Ric(g) = cI + LXg (10)

for some smooth vector field X on M and c ∈ R.
Given a Lie group G, a left invariant metric g (identified with the inner

product on a Lie algebra g) is called an algebraic Ricci soliton if

Ric(g) = cI + D (11)

for some c ∈ R, D ∈ Der(g). If G is nilpotent, the metric g is called nilsoliton;
if G is solvable, then g is solsoliton.

Any Riemannian algebraic Ricci soliton is automatically a Ricci soliton,
i.e. (11) implies (10). For a left invariant Riemannian metric, converse is also
true when G is nilpotent or completely solvable (see [19,20]). Furthermore,
a given solvable Lie group admits at most one Ricci soliton left invariant
metric up to isometry and scaling ([20], Theorem 5.1, Remark 5.2). Since
Einstein metric is a trivial example of Ricci soliton and the Lie group CHn

is completely solvable, we conclude:

Corollary 3.1. The only Ricci soliton left invariant metric on CHn up to
isometry and scaling is Einstein metric (9).
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Appendix A: Explicit Expression of Riemann Curvature
Operator

R(X,Yi)X =
1
4z

(−xiX + pYi)

R(X,Yi)Yj =
1
4z

(xjYi − δijσiX)

R(X,Yi)Zj =
δij

4
W

R(X,Yi)W = − β

4σi
Zi

R(X,Zi)X =
p

4z

(
Zi +

xi

σi
W

)

R(X,Zi)Yj =
xi

4z

(
Zi +

xi

σi
W − δij

z

xj
W

)

R(X,Zi)Zj = − σi

4z
δijX

R(X,Zi)W =
β

4zσi

(
−2xiX + xi

∑
l

xl

σl
Yl + zYi

)

R(X,W )X =
pβ

4z

∑
l

xl

σ2
l

Zl +
z + p

2z
W

R(X,W )Yi =
xiβ

4z

∑
l

xl

σ2
l

Zl − β

2σi
Zi +

xi

2z
W

R(X,W )Zi =
β

4zσi

(
−3xiX + 2xi

∑
l

xl

σl
Yl + 2zYi

)

R(X,W )W =
β

z

(
−X +

1
2

∑
l

xl

σl
Yl

)

R(Yi, Yj)X =
1
4z

(xiYj − xjYi)



232 Page 16 of 18 A. Dekić et al. MJOM

R(Yi, Yj)Yk =
1
4z

(δikσiYj − δjkσjYi)

R(Yi, Yj)Zk =
β

4

(
δik

σj
Zj − δjk

σi
Zi

)

R(Yi, Yj)W = 0

R(Yi, Zj)X =
1
4z

[
xiZj +

(
xixj

σj
− 2δijz

)
W

]

R(Yi, Zj)Yk =
1
4

(
δjk

β

σi
Zi + δik

σi

z
Zj + 2 δij

β

σk
Zk + δik

xjσi

zσj
W

)

R(Yi, Zj)Zk =
1
4z

[
2 δij

β

σk

(
xkX − zYk − xk

∑
l

xl

σl
Yl

)

+δik
β

σj

(
xjX − zYj − xj

∑
l

xl

σl
Yl

)
− δjkσjYi

]

R(Yi, Zj)W =
β

4z

[
−xj

σj
Yi + 2 δij(X −

∑
l

xl

σl
Yl)

]

R(Yi,W )X =
1
4z

(
βxi

∑
l

xl

σ2
l

Zl − βz

σi
Zi + 2xiW

)

R(Yi,W )Yj =
β

4z
δij

[
σi

∑
l

xl

σ2
l

Zl + (2
σi

β
− z

σi
)W

]

R(Yi,W )Zj =
β

4z

[
δij(X −

∑
l

xl

σl
Yl) − xj

σj
Yi

]

R(Yi,W )W =
β2

4zσ2
i

[
−xiX + xi

∑
l

xl

σl
Yl + (z − 2

σ2
i

β
)Yi

]

R(Zi, Zj)X = 0

R(Zi, Zj)Yk =
β

4z

[
δik

σj
(−xjX + xj

∑
l

xl

σl
Yl + zYj)

−δjk

σi
(−xiX + xi

∑
l

xl

σl
Yl + zYi)

]

R(Zi, Zj)Zk =
1
4z

[
δikσi(Zj +

xj

σj
W ) − δjkσj(Zi +

xi

σi
W )

]

R(Zi, Zj)W =
β

4z

(
xi

σi
Zj − xj

σj
Zi

)

R(Zi,W )X =
β

4zσi

(
−xiX + xi

∑
l

xl

σl
Yl + zYi)

)
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R(Zi,W )Yj =
β

4z
δij

(
−X +

∑
l

xl

σl
Yl

)

R(Zi,W )Zj =
β

4z

[
−xj

σj
Zi + δijσi

∑
l

xl

σl

2
Zl+

(
δij

(
2
σi

β
− z

σj

)
− xixj

σiσj

)
W

]

R(Zi,W )W =
β2

4z

[(
z

σ2
i

− 2
β

)
Zi +

xi

σi

∑
l

xl

σ2
l

Zl

]
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