
Citation: Milovanović, M.; Saulig, N.
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Abstract: The link between classical and quantum theories is discussed in terms of extensional and
intensional viewpoints. The paper aims to bring evidence that classical and quantum probabilities
are related by intensionalization, which means that by abandoning sets from classical probability one
should obtain quantum theory. Unlike the extensional concept of a set, the intensional probability
is attributed to the quantum ensemble, which is contextually dependent. The contextuality offers
a consistent realization of the measurement problem, which should require the existence of the
time operator. The time continuum by Brouwer has satisfied such a requirement, which makes it
fundamental to mathematical physics. The statistical model it provides has been proven tremendously
useful in a variety of applications.
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1. Introduction

Émile Meyerson considers the overall history of modern science as a progressive
realization of the fundamental bias in human reasoning, which concerns reducing dif-
ference and change to identity and constancy [1]. He designated such a tendency the
elimination of time, meaning its reduction to a mere parameter. It had already been initiated
via the substitution of the genus with the concept of class, which excluded the ontolog-
ical context related to generation and succession [2]. Classes have been used in the von
Neuman–Bernays–Gödel theory to provide a finite axiomatization of sets and handle the
set-theoretic paradoxes.

Such a viewpoint is referred to as extensional, considering that each entity is represented
by its extension which is a set of incident elements. The hierarchy is based upon cardinality
which ignores both the structure of elements and their relations, making a collection of
individual objects [3]. An alternative viewpoint, termed intensional, concerns the time
continuum which is regarded to be a fundamental intuition of consciousness [4]. Brouwer,
who endorsed such intuitionism, is a forerunner of the postmodern science [5].

The paper is concentrated on the foundation of probability, whereas a shift from
classical to quantum theory concerns intensionalization in which the concept of the set has
been replaced by the ensemble. The intensional viewpoint implies contextuality, which
is a term originating from the Latin verb contextere, meaning to weave together [6]. The
contextual probability should, therefore, correspond to an entanglement, which is the
fundamental conception of quantum theory [7], the reason why the definition of context
is often left implicit in the widespread literature [8]. Some attempts to elucidate such a
concept have led to very significant insights.
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In developmental theory, the context is defined as the totality of interrelations that give
meaning to a particular object [9]. Anderson has considered the role of context primarily
with respect to word recognition within sentences and in regard to memory [10]. The
multidisciplinary research across quantum probability and natural language processing
recieved growing attention in recent years [11]. Estes has stressed the importance of context
for memory retrieval and visualization [12], which encroaches on the scope of quantum
cognitive models [13]. Cohen and Grossberg have used the term in reference to the spatio-
temporal pattern [14], which is also evident in quantum gravity [15]. Stewart indicates
a link to the holistic paradigm and emergent phenomena [16]. Cohen has considered it
complementary to the content that is an extensional view [17]. Bueno has underscored the
contextuality of mathematics in general [18].

Ohmadahl relates contexts to states of a system [19], depending on the perception of an
essential situation one is in [20]. In that respect, the intensional probability corresponds to a
distinction of the internal state which was analyzed in treatments of the problem up to Poisson
[21]. The law of evidence that involved such probabilistic reasoning was an integral part of
court disputes [22]. The abandonment of the intensional viewpoint significantly contributed
to the radical change in the concept of causality which occurred during the late XVIII century
[23]. However, it did not end the perplexity that has persisted to the present day in the gap
between the objectivist interpretation of quantum theory and the subjectivist one which is
prominent via QBism and the many worlds interpretation [24]. The issue has by no means been
unequivocally resolved, which validates a claim by Heisenberg that “the history of physics is not
only a sequence of experimental discoveries and observations, followed by their mathematical
description; it is also a history of concepts” [25]. An argument against the extensional view on
quantum probability was recently presented by Peppe [26].

Khrennikov defines the context in terms of conditions under which the measurement
is performed [27], p. ix, as already discussed by Kolmogorov, who considered the math-
ematical formalization of the experiment [28]. That is the reason why contextuality in
classical theory is coupled to conditionalization, which becomes generally misleading for
the contextual probability [27], p. x. It has been noticed, however, that the context of
conditionals might elicit various estimates of their probabilities [29]. In quantum theory, the
conditional is a projector whose action on the context makes it a state. These conceptions
should, therefore, be separated at the very root and presented in a progressive manner that
allows some subtleties to emerge, which are applied not only in physics but in cognition,
psychology, artificial intelligence, and other sciences as well [30]. In that manner, funda-
mental applications act by a feedback loop onto foundations of mathematics reconsidering
concepts which it is based upon [31]. The range of such a loop might exceed over any
assumption in stipulating structures on the socio-historical level [32].

After the introduction, Section 2 considers the intensional viewpoint. It reflects the
geometrical structure of quantum states, which is the ultimate reach of intensionalizing
classical probability. Section 3 concerns the measurement problem which has occurred
due to the contextuality of quantum theory. A resolution is offered by the time continuum,
which is a consistent realization of the measurement process. Results are discussed in
Section 4, and the last one contains concluding remarks.

2. Fundamental Conception
2.1. Intensionality of Geometrical Structuring

The intensional viewpoint relies on a premodern tradition that corresponds to ge-
ometrical structures. Geometry should therefore be a paradigm of intensionality that is
reflected by hierarchical structuring. In order to straightforwardly expose the abovesaid,
the opposition between extensional and intensional viewpoints is presented through the
style in which modern art relates to traditional iconography (Figure 1).
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Figure 1. The Last Supper. Left: A modern painting that corresponds to the set of incident elements.
Right: A traditional icon that corresponds to a nested structure.

The modern painting corresponds to a set of incident elements, each representing an
individual object, incorporated in a sensory vivid and realistic composition. Structural
relations, which are systematically suppressed to the background, are evident in an ob-
server position that has been delimited by the picture frame. On the opposite, iconography
does not portray objects but their relations [33], pp. 315–319. An individual object might
be thoroughly distorted, but the image transmits structural information involving the
observer [34]. The icon is a nested structure that constitutes the spatio-temporal geometry,
unlike modern paintings whose geometrical structure has eliminated time [35]. Iconogra-
phy favors structuring over individuals, whose significance is subordinated, as well as in
category theory where the object is not the basic concept.

The intensional viewpoint is associated with, but not limited to, the manner in which
the entity has been constructed or defined [36], p. 6. It is directly applied to geometry
that has always been processually definable [37]. The seventh axiom of the Elements by
Euclide explicitly refers to a movement that is derived through the relationship between
line and circle which are basic concepts of the theory as well [38], p. 131. It is in opposition
to the extensional viewpoint whereat the line is not basic at all, which requires axioms of
arrangement to be placed before axioms of incidence [38], p. 17. The intension of geometry
has been damaged in that manner, since the point–line relationship (the incidence ∈) and
the line–plane one (the inclusion ⊂) are not represented by the same symbol. A sensible
solution considers the incidence to be purely geometrical relation, with no reference to set
theory [39].

Geometry is principally independent of the extensional viewpoint, which is disputable
only for the continuity axiom that requires a second-order predication. In that regard, the
Cantor–Dedekind axiom of continuity considers the line to be a complete order of discrete
points. However, many mathematicians and philosophers opposed such a discretization
of the continuum, including Aristotle, Leibniz, Kant, Poincaré, Weyl, Brouwer, and René
Thom [40], pp. 1–2. The conception of a line that is continually smooth disqualifies the
claim it is a mere set of some points, no matter how compact packing has been provided.
The continuum is actually irreducible to a nonenumerable cardinality, the reason why the
intensional view should be preferred. Such a viewpoint is reflected by quantum states which
constitute the geometry of the Hilbert space. It is the ultimate reach of intensionalizing
classical probability.

2.2. Foundation of Probability Theory

Common knowledge among mathematicians attributes the establishment of classical
probability to Andrei Nikolaevich Kolmogorov in the 1930s. However, it is generally
unknown that in the same years, John von Neumann founded quantum physics, which
was also considered a probability theory. Khrennikov demonstrated the existence of a
model of quantum theory in the classical one [41], pp. 261–262, though Accardi had
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already pointed out an analogy to non-Euclidean geometry [42]. This paper aims to bring
evidence that classical and quantum probabilities are related by intensionalization. It
means that by abandoning sets, which are the base of classical probability, one should
obtain quantum theory.

Classical probability implies the measurable space that is an algebra of sets MΩ, whose
elements termed events are included in outcomes of a random trial which is the set denoted by Ω.
The algebra MΩ ≤ P(Ω) is closed under the set operations of complement, intersection, and
union which are enumerable. If an event X ∈ MΩ happened, the measurable space should
collapse to the conditional subspace MX = {XY|Y ∈MΩ}which is a subalgebra of MΩ. In
the preliminary notation, the product of sets denotes intersection, the order relation ≤ concerns
inclusion, and P(Ω) = {A|A ≤ Ω} is the partitive set containing all subsets of outcomes.

The operation P : Y 7→ XY is a projector of MΩ onto MX which means that it
is idempotent, i.e., P2 = P. Furthermore, it is an orthogonal projector which implies
that the distance of an event Y ∈ MΩ to its projection PY ∈ MX is not greater than
the distance to any other element of the conditional subspace MX = {PZ|Z ∈ MΩ}.
In that regard, it is necessary to define a distance between sets A4B = A \ B + B \ A,
whereby the sum denotes the disjoint union of symmetric differences. In terms of the set
distance, the orthogonality comes down to the relation Y4PY ≤ Y4PZ which is implied
by Y4XY = Y \ X ≤ Y \ XZ ≤ Y4XZ. Respecting that, events correspond to conditional
subspaces and orthogonal projectors which concern geometrical structuring.

The set distance satisfies the axioms of (i) indiscernibility A4B = 0 ⇔ A = B,
(ii) symmetry A4B = B4A, and (iii) subadditivity A4B + B4C ≥ A4C. The last
axiom of distance (iii) is a triangle inequality that follows from A \ B + B \ C ≥ A \ C
and B \ A + C \ B ≥ C \ A, which are equivalent to the formula ω ∈ B ∨ ω /∈ B whose
validity comes because sets are discrete and the incidence is, therefore, a decidable relation.
Following the monotonicity of the order, one gets subadditivity even in the case if the left
side of (iii) is not a disjoint union. Null in the axiom (i) denotes the empty set.

The issue arises why one should implement a real-valued measure if the measurable
space, equipped by a set distance, conditional subspaces, and projectors, already exists.
There are two main reasons for that. The first one concerns the fact that inclusion in set
theory is a partial order which does not allow comparison of all events. However, such
a gain is not crucial. Brouwer has demonstrated that the equality of real numbers is not
decidable, which implies that there is just a partial order among them. The situation might
appear easier than in set theory, but rational numbers are a much better solution if the total
order has been pursued.

The second and more significant reason is the intensionalization of probability theory.
It has turned out that set theory is not an adequate framework for probability consideration.
The event is regarded classically to be a set of some outcomes ω ∈ Ω, which is agreeable
if their cardinality were finite. In that case, the algebra MΩ might coincide with the
partitive set P(Ω) which corresponds to the discrete topology of Ω. However, there are
random trials wherein it is not easy to designate outcomes at all. An instance concerns
the continuum case, whereat the algebra has not involved all of the many subsets. The
measurable space MΩ is, therefore, an attempt to follow the topology of Ω which is not a
discrete one. Confusion also occurs in considering the contextual probability which should
not reduce to conditionalizing by a set of certain outcomes [27], p. x.

For that reason, the set distance is replaced by real-valued metrics which concerns
the measurement process. The metrical distance d(A, B) = ‖A4B‖ ≥ 0 is induced by
a norm whose square ‖X‖2 = 〈X|X〉 corresponds to the probability measure µ(X). The
norm should satisfy axioms of (i) positive definiteness ‖X‖ = 0⇔ X = 0, (ii) homogeneity
‖aX‖ = a‖X‖, and (iii) subadditivity ‖X + Y‖ ≤ ‖X‖+ ‖Y‖. The last axiom is a conse-
quence of the measure subadditivity, which has been satisfied even if the left side of (iii) is
not the norm of a disjoint union. The axiom (ii) demands elucidation on what the scalar
multiplication of a set should refer to. In that respect, scalars are regarded to be just 0
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and 1 values. Multiplication of a set by 1 results in the same set, but multiplying by 0 has
collapsed it to a singleton ∗ which consists of any element from Ω that is termed null.

The probability measure µ(X) = ‖X‖2 is induced by the inner product 〈X|Y〉 =
µ(XY), wherewith the additivity rule µ(∑⊥ Xi) = ∑ µ(Xi) comes to be an enumerable
instance of the Pythagorean theorem for orthogonal sets. One does not require standard-
ization per unit, since it is feasible for any real-valued measure that is non-trivial. The
departure from standardization makes it much easier to consider the conditional probability,
which is not required to be unitary.

The axiom (i) implies positive definiteness of the measure µ(X) = 0 ⇔ X = 0 and
(ii) requires homogenity µ(aX) = aµ(X) for a = 0, 1 considering that a2 = a. It follows
that the measure of the singleton is null µ(∗) = 0 which contradicts the claim that only the
empty set is nullary. The resolution requires an almost equality ≡ between events, which is
defined to be A ≡ B⇔ µ(A4B) = 0. The quotient structure of the measurable space MΩ
according to the almost equality ≡ in the measure µ is the probability space Mµ = MΩ/≡
whose elements are equivalence classes of almost equal sets. In such a space, all axioms of
the norm and the distance are satisfied.

An immediate consequence of the quotientation is that events do not consist of certain
outcomes anymore. Each outcome corresponds to the elementary event which is a singleton
and it might be eliminated, remaining thereby in the same class. The probability space
Mµ ≤ P2(Ω) is, therefore, not included in the partitive set of outcomes but in the partitive
squared one and the matter should no longer be traced in an extensional manner. The final
step of intensionalization concerns the transition from an event to the random variable
which is a measurable morphism of Mµ onto the Borel algebra B over real or complex
numbers. The measurability of a morphism f is defined in terms of the inverse image
f−1 : B → Mµ, which implies congruence in respect to set operations of complement,
intersection, and union. In that regard, one has jumped from objects to morphisms by
means of category theory. Considering that the Borel algebra is generated by the topology
T of real or complex numbers, the measurability reduces to evidence f−1(T) ≤Mµ, which
means that each variable is continuous in a topology that is included by the probability
space. An arising issue concerns the geometry of measurable morphisms.

2.3. Geometrical Structure of Probability

A measure affecting the probability space Mµ has to be absolutely continuous since
µ is positive definite. According to the Radon–Nicodym theorem, there is the derivative
ρ ≥ 0, which corresponds to a density function from L1

µ. Considering that it is non-negative,
the density is represented by ρ = |φ|2 wherein the random variable φ is a root function
from L2

µ. The measure is, therefore, representable in the form dµφ = |φ|2dµ, which means
that µφ =

∫
|φ|2dµ, whereby the event from the probability space has been implied by the

domain of integration.
In that manner, the contextual probability µ comes to be a generator of measures µφ

which are parametrized by the random variable φ. It does not depend on events only, but as
well on contexts corresponding to states of a quantum system. Quantum states constitute
the Hilbert space L2

µ whose geometry is induced by the inner product 〈u|v〉 =
∫

u†v dµ,
wherewith † denotes the complex conjugate of a variable. One defines the expectation
value µφ( f ) = 〈|φ|2| f 〉 = 〈φ| f φ〉 that is specified for any f from L∞

µ , which implies f φ

from L2
µ for every φ from L2

µ.

An event X ∈ Mµ is identified by its characteristic x(ω) =

{
1, ω ∈ X
0, ω /∈ X

which is

the random variable whose L2
µ-norm squared coincides to a measure value, considering

that ‖x‖2 =
∫
|x|2 dµ =

∫
x2 dµ =

∫
x dµ = µ(x) = µ(X). However, such a variable has

been ill-defined since Mµ is the quotient space whose elements do not consist of certain
outcomes. One should, therefore, regard the event to be a variable that satisfies x2 = x and
x† = x, which has been used in the proof of the previous relation. These are properties of
the orthogonal projector which is the operator satisfying P2 = P and P† = P, wherewith †



Mathematics 2022, 10, 4294 6 of 16

denotes the Hermitian adjoint. The projector of an event x is the operator Pφ = φx that
restricts any variable to the concerned event. The invariant subspace J : φ = φx consists
of states satisfying a fixed point property φ = Pφ for the orthogonal projector. It contains
random variables whose support supp φ = φ

φ (implying an arrangement 0
... = 0) is included

by the event, which means that supp φ ≤ x. However, not all projectors are related to
multiplication by an event, but by any operator being self-adjoint and idempotent.

The probability measure of an event x in the context φ is equal to µφ(x) = 〈|φ|2|x〉 =
〈φx|φx〉 which implies µφ = ‖Pφ‖2, wherein Pφ is a state from the invariant subspace of
an orthogonal projector. It follows that the event takes place of conditionalization which
concerns a projection onto the Hilbert space. The probability is related to states through
a quadratic form of the norm squared, which makes it nonadditive in general. However,
the additivity rule µx+y+... = µx + µy + . . . is satisfied if contexts are mutually orthogonal
events, which confirms that classical probability has been included in the quantum one.

The double-slit experiment is regarded to be an instance of quantum probability. It was
first performed in 1802 by Thomas Young, who aimed to demonstrate the wavelike behavior
of light. Clinton Davisson and Lester Gemer demonstrated in 1927 that electrons behave in
the same manner, which was extended to general matter following the de Broglie principle.
An important interpretation of the experiment involves a single particle, considering the
probability of its occurrence on the screen. A trace of the particle is mediated by two slits
that might be opened or closed (Figure 2).

Figure 2. The double-slit experiment. A trace of the particle is mediated by two slits that might be
opened or closed.

In classical theory, one should consider probabilities that particle has passed through
a slit, which are disjoint and additive therefore [43]. The quantum probability however
depends on a context corresponding to the variable which is termed wave function. Every
point which is reached by a wave becomes its source, due to the Huygens principle, which
means that contexts of both slits might be summed up in a resultant form. It does not
mean that probabilities are summable in the same manner, since µφ+ψ 6= µφ + µψ for
random variables φ and ψ which are not events but contexts not satisfying the additivity
rule. Quantum probability is behaved waverly, which makes it subject to geometrical
structuring [41], pp. 120–127. The measurement problem which has occurred due to the
contextuality of quantum theory requires an intensional concept of the ensemble.
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3. Results
3.1. Quantum Ensembles and Measurement

The foundation of probability concerns one of the thirteen problems which David
Hilbert presented at the International Congress of Mathematics in 1900, considering it a
testament to the XX century. An original formulation takes probability and mechanics
side by side, which should become substantially related due to the emergence of quantum
physics thirty years later. The problem that was presented by Hilbert explicitly asked for
the axiomatization of physical theories and it had not been clear what features might be
incorporated, which is the main reason for probability was axiomatized so late [41], pp. 2–3.

The model highlighted for such an activity has been the Foundations of Geometry, which
significantly elucidates his conception of the axiomatic method. Such an announcement is
considered by Urlich Majer to be the birth of mathematical physics in terms of a unification
theory that should involve geometry, mechanics, probability, etc. [44]. Hilbert’s statement
that “physics is too much hard for physicists” was actually kept by John von Neumann,
who founded quantum probability in 1932. Moreover, he suggested consideration of the
completeness issue, tracking Kurt Gödel’s results which von Neumann was very familiar
with [45]. There is also his establishment that the relation between properties of a physical
system and subspaces of the theory makes possible a sort of logical calculus which is not
classical one but concerning the concept of simultaneous decidability [46], pp. 252–254.

Andrei Nikoleavich Kolmogorov constituted the axiomatic probability theory in
1933 [28]. It had originally been published in German and the English translation was
released only in 1952, whilst the complete Russian translation was only released in 1974.
The absence of an English translation at the time when the German language lost its interna-
tional dimension led to a representation of classical probability in which the interpretation
issue by Kolmogorov disappeared, since it was considered a philosophical remark with no
mathematical relevance. The consequence of such ignorance was the oblivion of contextu-
ality, considering that Kolmogorov designed probability as a mathematical formalization
of an experiment, which was already indicated by the conception of random trials. Any
experimental context generates an inherent measure of its own probability space, which
makes it intrinsically related to the measurement problem. The contextuality is a significant
relation to quantum theory, wherein the context corresponds to a state of the system.

Events are related to some, but not all projectors which represent conditionalization
concerning a system state. It is, therefore, necessary to assign a probability not only to
events but to any orthogonal projector that corresponds to the invariant subspace consisting
of states satisfying a fixed point property. The quantum ensemble is defined to be a measure
assigning non-negative value to each of the orthogonal projectors. According to the Gleason
theorem, there is a density operator ρ ≥ 0 from L1

M that is self-adjoint, which implies ρ =
ΦΦ† for the root Φ from L2

M. The ensemble has taken the form dMΦ = ΦΦ†dM, wherein
M = µ⊗ µ is the probability measure on the product algebra Mµ ⊗Mµ. The definition
means MΦ(P) = 〈ρ|P〉 for any orthogonal projector P, implying the inner product 〈U|V〉 =
Tr U†V, wherewith † denotes an adjoint followed by the operator multiplication and trace
[47], pp. 131–134.

In that manner, the contextual probability M comes to be a generator of measures MΦ,
which are parametrized by the operator Φ representing a context that corresponds to the state of
a quantum system. The probability measure should be equal to MΦ(P) = 〈ΦΦ†|P〉 = ‖P Φ‖2,
wherein Φ 7→ P Φ is the orthogonal superprojector that is the projection onto the invariant
subspace consisted of states satisfying the fixed point property J : Φ = PΦ which has been
satisfied by P as well. The ensemble theory offers a consistent realization of the measurement
problem which is intrinsically related to contextual probability.

The role of random variable is played by self-adjoint operators in the form A = ∑ aiPi
wherein a1, . . . , ai, . . . are different eigenvalues and P1, . . . , Pi, . . . , which satisfy ∑ Pi = I,
are mutually orthogonal projections onto invariant eigenspaces. The orthogonality Pi ⊥ Pj
is equivalent to PiPj = 0, which means that the projectors generate a measurable space
according to the Stone representation theorem for Boolean algebras. It makes it possible
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to consider the operator to be a variable in terms of classical theory, whereby mutually
orthogonal projectors correspond to disjoint sets which are inverse images of single values.
Such an extensional viewpoint is inherent to the measurement problem which actually
concerns classical probability.

Measuring A in a context Φ, one should regard the density operator ρ = ΦΦ† to be
a variable defined on the same space which implies Piρ = ρPi. The measurement process
is, therefore, represented by the conditionalizationMρ = ∑ PiρPi that is a superprojection
onto the invariant subspace consisting of operators which commute with each of projec-
tors [48]. It is also presentable in the formM : ΦΦ† 7→ ∑(PiΦ)(PiΦ)† which has involved
superprojectors Φ 7→ PiΦ acting on the root operator.

If P1, . . . , Pi, . . . are single properties which are projections whose invariant subspaces
are one-dimensional, the process corresponds toMρ = ∑ 〈ρ|Pi〉︸ ︷︷ ︸

MΦ(Pi)

Pi wherein coefficients are

probabilities of Pi in a context Φ. Such an instance applies as well to the density operator
ρ = ∑ MΦ(Pi)Pi which is a fixed point ofM, since the measurement procedure has actually
intended to stipulate probabilities MΦ(Pi) = 〈ρ|Pi〉 notwithstanding what values of the
variable are. One might consider, therefore, that the optimal measurement is applied to a
density having satisfied ρ =Moρ. However, the measurement is generally an irreversible
process, which is evident in the fact that a single property might be superprojected to a
mixture of properties having some probabilities. The situation is explained in an elegant
manner by von Neumann, who defines the entropy increase when one goes from a single
property to a mixture [46], pp. 379–426.

He identified two fundamentally diverse types of intervention in the quantum system,
the first one corresponding to the reversible evolvement by the Schrödinger equation and
the second one to an irreversible measurement. Von Neumann was wondered by the fact
that the entropy increase follows the measurement process, not representing any temporal
evolution, which is totally opposite to thermodynamics, which relates the increase of
entropy to an evolution in the temporal domain. The reason for such an odd situation
dwells in the fake concept of time which is represented by a mere parameterization, as
in the Newtonian mechanics [46], pp. 351–354. He has admitted an essential weakness
of quantum theory, which concerns the fact that it is non-relativistic, whereas spatial
coordinates are represented by Hermitian operators, and time is just a parameter. The time
operator, which should be a resolution of the measurement problem, is, therefore, a chief
link between quantum and relativity theories as well [49].

The uncertainty between time and energy, which has frequently been discussed, is an
effective definition of the time operator [50]. In the wave function formulation of quantum
theory, however, there is no operator that satisfies the uncertainty relation respecting a
Hamiltonian, which corresponds to the energy of a system. The reason for that is the fact
that the Hamiltonian rules the evolution of stationary states, which are analogous to orbits
in classical theory. Nevertheless, the time operator is definable in an ensemble formulation,
which relates states to operators whose evolution is governed by the Liouvillian of a
quantum system [51].

3.2. Time Continuum and Intuitionism

The intuitionist mathematics, that considers time to be the primordial intuition of con-
sciousness, is an adequate framework to support the intensional viewpoint [36], pp. 92–94.
A fundamental structure in that regard is the time continuum, which corresponds to a
skeletal category able to embed other ones within itself [52]. Such an embedment of the
probability space is a random variable, which recovers its structure in terms of measurable
morphisms. In order to represent quantum states, variables are confined to the Hilbert
space, where geometry has been induced by an inner product. The concept of a state
extends to quantum ensembles, which are represented by operators. The measurement pro-
cess, corresponding to a supreprojection in the space of ensembles, concerns a realization
of the time continuum.
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The concept of measurement has originated from the geometrical algebra by Euclide,
which is presented in the Elements, whose fifth book elaborates a doctrine of proportion
considering commensuration of magnitudes. According to the Euclidean algorithm, mag-
nitudes a and b measure each other in the manner of a continued fraction a

b = 1
n1+

1
n2+

1

...
having the spectrum n1, n2, . . . . The proportion a

b = c
d , which is indicated by the matching

of respective terms in both spectra, defines the identity on the time continuum. In that
respect, it corresponds to the continued fraction expansion, implying the measurement
process which takes place step by step over time.

The expansion concerns Diophantine approximations

ξi =
1

n1 +
1

n2+
1

...+ 1
ni

whose numerator and denominator in a fraction ξi =
hi
ki

satisfy recurrence relations hi+1 =

ni+1hi + hi−1 and ki+1 = ni+1ki + ki−1, considering the initial conditions h0 = 0, h1 = 1 and

k0 = 1, k1 = n1. The difference ∆ξi between successive approximations is hi+1
ki+1
− hi

ki
= (−1)i

kiki+1
,

which makes a continued fraction to be the alternating series ∆ξ0 + ∆ξ1 + · · · = 1
k0k1
−

1
k1k2

+ . . . , that is a sparse representation composed of terms from the redundant dictionary
1
1 , 1

2 , . . . , containing fractions of a unit numerator.
The series corresponds to a binary code wherein 0 is assigned to terms of the dictio-

nary that do not participate in the series, and 1 to those that do participate, proceeded
by an alternating ± sign. Such a representation of the measurement process is highly
redundant since the entire dictionary cannot be involved in a series. One should, there-
fore, eliminate excess zeros, which is achieved by coding the spectrum n1, n2, . . . The
ultimate representation is composed of alternative ± values different from zero at po-
sitions n1, n1 + n2, . . . , which gives rise to the question mark function by Minkowski
? : 1

n1+
1

n2+
1

...

7→ 1
2n1−1 − 1

2n1+n2−1 + . . . transforming the time continuum from the contin-

ued fraction to the binary code ω = 0. . . .︸ ︷︷ ︸
n1

1 . . .︸︷︷︸
n2

0 . . .︸︷︷︸
...

1 . . . The measurement step in terms

of binary digits corresponds to the Rényi map Rω =

{
2ω, 0 ≤ ω < 1

2
2ω− 1, 1

2 < ω ≤ 1
.

States of the measurement process are represented by random variables from the
Hilbert space L2

µ, implying the Lebesgue measure µ on the Borel algebra over the unit
interval. The event X evolves according to the inverse image in the Rényi map R−1(X) =
X
2 + X+1

2 , whereat the sum between fractions denotes disjoint union and one within the
fraction is the pointwise addition. Such an evolution induces the operator U : x(ω) 7→
x(Rω), which is applied to any variable. It is coincident to the action of an adjoint operator
onto the density function ρ = |φ|2, considering that µφ(Ux) = 〈ρ|Ux〉 = 〈U†ρ|x〉. The

adjoint U† : ρ(ω) 7→ ρ( ω
2 )+ρ( ω+1

2 )
2 , which also applies to any variable, is the left inverse of

the evolutionary operator, i.e., U†U = I.
The measurement process is reflected by wavelets ψj,k, which correspond to orthonor-

mal bases of L2
µ. The Haar base is paradigmatically designed by translations and normalized

dilatations of the mother wavelet χ(ω) =

{
−1, 0 ≤ ω < 1

2
+1, 1

2 < ω ≤ 1
in the manner of

χj,k(ω) =

{
−2j/2, k

2j ≤ ω < k+1/2
2j

+2j/2, k+1/2
2j < ω ≤ k+1

2j
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for 1 ≤ k ≤ 2j, which implies that basic variables are zero-valued elsewhere.
Wavelets on the unit interval should satisfy axioms:

(i) annihilation j < 0⇒ ψj,k = 0;
(ii) periodization ψj,k = ψj,k+2j ;

(iii) translation ψj,k

(
x− m

2j

)
= ψj,k+m(x);

(iv) evolution U†ψj,k =
1√
2

ψj−1,k;

(v) basicity φ = A + ∑j≥0 ∑2j

1 Dj,kψj,k for every variable φ from L2
µ and some coeffi-

cients of approximation A and details Dj,k;
(vi) orthonormality ψj,k, 1 ≤ k ≤ 2j and the constant variable 1 constitute an orthonor-

mal base of L2
µ.

It follows from the last axiom that the base consists of decorrelated variables, consider-
ing that E ψj,k = 〈1|ψj,k〉 = 0 = E 1 E ψj,k, and E ψ†

j,kψl,m = 〈ψj,k|ψl,m〉 = 0 = E ψ†
j,k E ψl,m

for (j, k) 6= (l, m). In terms of the evolutionary operator, axiom (iv) gives rise to U ψj,k =
1√
2

ψj+1,k +
1√
2

ψj+1,k+2j . Since the Rényi map is a measure-preserving transformation of
the time continuum, U should preserve the distribution of random variables across scales.
In addition, the translation axiom (iii) claims that constituents of the base are equally
distributed within a common scale [53].

Wavelets ψj,k are designated by two indices, where the first one corresponds to the
scale in the binary hierarchy. It is transmitted to detail coefficients which form the binary
tree D = (Dj,k), wherein each one Dj,k = 〈ψj,k| f 〉 at the scale j is inherited by two of them
sharing the same position at the next scale j+ 1 (Figure 3). Steps of the measurement process
correspond to invariant subspaces ∆j of orthogonal projectors Pj = ∑2j

k=1 Dj,k ψj,k, whose
wandering generates a multiresolution analysis due to the shift property ∆j = U−1(∆j+1).
In that respect, time is represented by the operator Tψj,k = jψj,k, with eigenvalues that
correspond to scales of an eigenbase ψj,k. The operator T = ∑j≥0 jPj, acts on a dense subset
of L2

µ 	 1, which is the Hilbert space reduced by the subspace of constant variables. The
uncertainty relation [T, U] = U, which follows from the shift property, is the definition of
the time operator [54].

Figure 3. The binary tree of detail coefficients. Each node at a scale is inherited by two of them at the
next one.

3.3. Wavelet-Domain Hidden Markov Model

In order to elucidate the evolution of projectors, one requires an invertible extension
of the operator U. The natural extension concerns the Baker map

B(ω1, ω2) =


(

2ω1, ω2
2

)
, 0 ≤ ω1 < 1/2(

2ω1 − 1, ω2+1
2

)
, 1/2 < ω1 ≤ 1
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inducing the evolutionary operator Uχ : φ(ω) 7→ φ(B ω) [55]. In that regard, the Hilbert
space L2

µ should extend to L2
M = L2

µ ⊗ L2
µ, wherein M = µ⊗ µ is the Lebesgue measure on

the Borel algebra over the unit square. The time operator Tχ concerning the evolution by
Uχ has been explicitly constructed, and the uncertainty relation is easily generalized [47],
pp. 47–60. Its projection onto L2

µ corresponds to the multiresolution analysis generated
by the Haar base. The time operator of any wavelets is obtained through conjugation
T = C TχC−1, by C which transforms the Haar base to the other one. It corresponds to the
evolutionary operator U = C UχC−1 that is also an extension of U : x(ω) 7→ x(Rω) which
is a reason to be designated by the same letter.

The orthogonal projection P : φ 7→ φx of an event x evolves into UP = U P U†

concerning the event U x, which is an evolutionary superoperator that should be applied
to all projectors. The density operator ρ = Φ Φ† represents the probability measure whose
evolution MΦ(U P) = 〈ρ|U P〉 = 〈U †ρ|P〉 is coincident to U † ρ = U† ρ U = (U† Φ)(U†Φ)†,
which corresponds to an action of U† on the root operator Φ. In that respect, the ensemble
evolves according to the rule MΦ(U P) = MU†Φ(P).

The measurement corresponding to wavelets ψj,k is represented by Pj,k = ψj,k ⊗
Dj,k, that is a complete system of orthogonal projectors on L2

µ 	 1, which evolve by
UPj,k = Pj+1,k + Pj+1,k+2j . The probability measure of a property Pj,k in the context Φ

is MΦ(Pj,k) = ‖Pj,k Φ‖2 = E |Dj,k|2, wherein Φ = ∑j≥0 ∑2j

k=1 ψj,k ⊗ Dj,k is a decomposition
of the root operator from L2

µ 	 1⊗ L2
µ 	 1. The density operator should take the form

ρ = ∑j≥0 ∑2j

k=1 E |Do
j,k|

2Po
j,k, which is a fixed point of the optimal measurement ρ =Moρ.

Due to the decomposition

ΦΦ† = ∑
j,l≥0

2j

∑
k,m=1

E Do
j,k Do†

l,mψo
j,k ⊗ ψo†

l,m

it follows that detail coefficients in the optimal base are decorrelated, i.e.,

E Do†
j,kDo

l,m = 0 = E Do†
j,k E Do

l,m

for (j, k) 6= (l, m).
In another base ψl,m that is suboptimal, detail coefficients take the form

Dl,m = ∑
j≥0

2j

∑
k=1
〈ψl,m|ψo

j,k〉Do
j,k

which implies an approximate decorrelation of the ensemble. Considering that ψo
j,k and ψl,m are

almost entirely localized in [ k−1
2j , k

2j ] and [m−1
2l , m

2l ], respectively, and 〈ψl,m|ψo
j,k〉 are, therefore,

negligible if domains do not intersect, correlations predominantly concern inheritance along
branches of the binary tree. The time operator indicates an irreversibility that leads to the
wavelet-domain hidden Markov model, which has been proven tremendously useful in a
variety of applications including speech recognition and artificial intelligence (Figure 4).

The model claims that correlations between detail coefficients are realized through
hidden variables, forming a Markovian tree S = (Sj,k) due to inheritance along its
branches [56]. The information contained in detail coefficients is independent of wavelets,
since H(CD) = H(D) + log |det C| = H(D) for unitary operator C representing the base
substitution. It is decomposed due to the canonical relation H(D) = H(S) + H(D|S),
wherein the first term represents a structural information, and the second one is an ir-
reducible randomness that remains even if all correlations have been recognized. The
structural information is base-dependent, and the optimal base is characterized by its
maximization, which concerns the most significant increase of entropy in the temporal
domain [57].
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Figure 4. The wavelet-domain hidden Markov model. Black nodes correspond to detail coefficients
and blue ones to hidden variables.

4. Discussion
4.1. The Art of Memory

Discussing the measurement problem, von Neumann made a reference to Bohr, who
was the first to have pointed out a link between quantum theory and the principle of
psychophysical parallelism [46], p. 207. Bohr has adopted Fechner’s psychophysics, which
is termed the identity view, since the observer is not to be considered a conglomerate of
two substances but one single entity [58]. The most significant sources for psychophysical
parallelism are the foreword and the introduction from the Elements of Psychophysics [59].
The outer psychophysics, which is a link between sensation and stimulation, is realized
through the neuroaesthetical computation that relates sensation to neural activity, which is
regarded by Fechner as the inner psychophysics [35].

An important repercussion of von Neumann’s solution to the measurement prob-
lem is that the irreversibility takes place in the presence of the observer’s mind, which
seems to play an active role in the process. The only manner to make such an unpleasant
situation compatible with psychophysical parallelism concerns switching into the inner
psychophysics, due to a change in representation Λ = λ(T) which is the operator function
of time [60]. In that regard, the inner psychophysics is represented by a Markovian tree
of hidden variables, which corresponds to the recognition of structural information. It
concerns a temporally based hierarchy whose paradigm is a memory that has taken an
artistic form [61]. The traditional iconography is an instance of the time continuum, whose
intensionality reflects in hierarchical structures of geometry (Figure 5). A temporal organi-
zation also characterized primordial painting, whose origins were traced up to the Stone
Age [33], pp. 336–337, as well as the postmodern art during the XX century [62].

Figure 5. Temporal organization of the traditional iconography. Left: The temporally based hierarchy
which is represented by an erection from horizontal through semi-vertical to the vertical position in
respect to Christ’s figure. Right: Hierarchical structures of geometry, which have emerged in the von
Koch curve.
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The art of memory was an occupation of Gottfried Wilhelm Leibniz whose Dissertatio
de arte combinatoria relies on various theories of such discipline. In that respect, one should
consider his intent on finding a universal language through a combination of significant
symbols which was presented in Characteristica universalis [63]. It led him to the invention
of infinitesimal calculus, derived from a continuous search for the system of symbolic
representation [64]. The time continuum which was indicated in such a manner takes on
complete realization considering the intuitionist theory of infinitesimal analysis, which is
an intensional one [40].

4.2. Postmodern Science

Charles Sanders Peirce admits that it is quite difficult to explain the fact of memory
and apparently perceiving the flow of time unless we suppose immediate consciousness
to extend beyond a single instant [65]. There is an evident incompatibility between the
extensional view and a conscious mind whose primordial intuition concerns the time flow.
Memory should be related to inheritance in a hierarchical structure that is temporally
organized [61]. The concept of genus originally implied generation and succession, but
it has been substituted by the class, which is an abstract collection in the manner of set
theory [2]. It was the germ of modernism in which science has been sentenced, due to such
negligence of the generative unity.

Postmodern science has greatly overcome the extensional viewpoint [5]. First of
all, Gödel’s theorems demonstrated the incompleteness of such a view by the usage of
self-referential sentences [36], pp. 39–47. However, Gödel has pointed out that Leibniz,
in his writings about the Characteristica universalis, did not speak of a Utopian project at
all [66]. As a matter of fact, in the Monadology, he exposed a hierarchical structure of entities
resembling quantum states. It indicates an intensionalization, by which classical theory is
related to quantum one [67].

The phenomenology by Mihailo Petrović is also reminiscent of the mathesis universalis,
beginning from Pythagoras and going through Descartes and Leibniz, which represents
a universal calculus that should involve everything in existence [68]. In order to give
methodological support to such a tendency, he has established mathematical spectra which
correspond to the method of optical spectroscopy [69]. It applies embedding of various
phenomena in the time continuum, whose digital positions are analogous to spectral
lines [70]. In that regard, intuitionism is a fundamental of mathematical physics standing
for the unity of mathematics and applications.

Fixed points in the capacity of self-referential sentences, which ascribe themselves
some properties in a certain theory, motivated general research of such a conception.
Restoration of the intensional viewpoint implies the requirement that the projector des-
ignates a self-attributed property in the form of a fixed point [36], p.63. The fact that
the projector itself is a fixed point elucidates the property of properties corresponding to
self-reference [46], p. 249. It fits well to a resolved form that is termed the reproductive
one [71], which indicates an interrelation not only to fractal geometry but to biology and
other sciences [72].

The measurement is also represented by a superprojection that is self-referential, and
the density operator is a fixed point in the optimal instance. The time operator provides
an opportunity of considering the measurement process in terms of a temporal evolution,
which unites two fundamentally diverse types of intervention in the quantum system. A
change in representation provides switching between outer and inner psychophysics, due
to the principle of psychophysical parallelism.

5. Conclusions

A link between classical and quantum probabilities has been elaborated in terms of
intensionalization, which concerns the abandonment of sets in favor of ensembles. In
that respect, the probability is not assigned to events but to contexts, which correspond
to the states of a quantum system. The intensional probability theory is reflected by
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a geometrical structure of quantum states, corresponding to operators on the Hilbert
space. The contextuality gives rise to the measurement problem, which should require
the existence of the time operator. The time continuum by Brouwer has satisfied such a
requirement, which makes intuitionism fundamental to mathematical physics.

The concept of measurement is related to the Euclidean algorithm, which considers the
commensuration of magnitudes. The step in terms of binary digits concerns the Rényi map
which extends to the baker map, inducing the evolutionary operator. The time operator is
defined by wavelets, which correspond to the orthonormal base that reflects the hierarchy of
the measurement process. Its existence indicates an irreversibility that leads to the wavelet-
domain hidden Markov model, which has been proven tremendously useful in a variety
of applications. The model provides switching between outer and inner psychophysics,
due to a change in representation, which is the operator function of time. In that manner,
the inner psychophysics should recognize structural information presenting a temporally
based hierarchy whose paradigm is memory.
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