
Comparative Analysis of Heuristic Approaches to P‖Cmax

Dragutin Ostojić1 a, Tatjana Davidović2 b, Tatjana Jakšić Krüger2 c and Dušan Ramljak3 d

1Faculty of Science, Department of Mathematics and Informatics, University of Kragujevac, Serbia
2Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia

3School of Professional Graduate Studies at Great Valley, The Pennsylvania State University, Malvern, PA, U.S.A.

Keywords: Scheduling Problems, Identical Processors, Stochastic Heuristics, Solution Transformation.

Abstract: Cloud computing, new paradigms like fog, edge computing, require revisiting scheduling and resource alloca-
tion problems. Static scheduling of independent tasks on identical processors, one of the simplest scheduling
problems, has regained importance and we aim to find stochastic iterative heuristic algorithms to efficiently
deal with it. Combining various actions to define solution transformations to improve solution quality, we cre-
ated 35 heuristic algorithms. To investigate the performance of the proposed approaches, extensive numerical
experiments are performed on hard benchmark instances. Among the tested variants, we identified the best
performing ones with respect to the solution quality, running time, and stability.

1 INTRODUCTION

Driving online decision making requires generating
huge amounts of data and its expeditious analysis -
thus high performance computing resources and their
efficient use are needed. This yields reconsideration
of already extensively investigated practical, usually
complex, scheduling/resource allocation problems.

We revisit a problem of scheduling independent
tasks on parallel processors (Graham, 1969; Davi-
dović et al., 2012; Frachtenberg and Schwiegelshohn,
2010; Pinedo, 2012) as a result of an increased inter-
est in efficient exploration of high performance com-
puting resources, cloud computing and massively par-
allel multiprocessor systems. We are considering a
case study of P||Cmax - static scheduling of indepen-
dent tasks on identical processors. The expression
static means that the number of tasks and their du-
ration (lengths, processing times) are known a pri-
ori. The problem objective is to minimize the time
required to complete the execution of all tasks, i.e.,
makespan Cmax. P||Cmax is known to be NP-hard in
a strong sense (Fanjul-Peyro and Ruiz, 2010). Nu-
merous exact (Mrad and Souayah, 2018), heuristic
(Paletta and Ruiz-Torres, 2015), and metaheuristic

a https://orcid.org/0000-0001-6704-353X
b https://orcid.org/0000-0001-9561-5339
c https://orcid.org/0000-0001-6766-4811
d https://orcid.org/0000-0001-7477-1973

(Davidović et al., 2012; Alharkan et al., 2018; Laha
and Gupta, 2018; Kamaraj and Saravanan, 2019) al-
gorithms have been developed for P||Cmax.

To efficiently handle P||Cmax, we analyze stochas-
tic iterative heuristic algorithms based on random
transformations of the current solution with an aim to
improve its quality. Transformations are applied re-
peatedly until some predefined stopping criterion is
met. Each transformation consists of several steps
(different actions could be performed within each).
Combining various actions, we created 35 heuristic
algorithms and compared them on hard benchmark in-
stances. The diversity in performance with respect to
the solution quality, running time, and stability can be
significant. Our experimental evaluation enabled to
identify the best performing variants.

In the remainder of this paper: Section 2 contains
P||Cmax problem description, and a brief relevant liter-
ature overview, the proposed heuristic algorithms are
presented in section 3, the experimental evaluation in
section 4, and concluding remarks in section 5.

2 P||Cmax BACKGROUND

Let m be the total number of available identical pro-
cessors, n the number of tasks to be executed. The
P||Cmax problem consists of assigning tasks to pro-
cessors, and determining their starting times. All the

Ostojić, D., Davidović, T., Jakšić Krüger, T. and Ramljak, D.
Comparative Analysis of Heuristic Approaches to P||Cmax.
DOI: 10.5220/0011008500003117
In Proceedings of the 11th International Conference on Operations Research and Enterprise Systems (ICORES 2022), pages 259-266
ISBN: 978-989-758-548-7; ISSN: 2184-4372
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

259

tasks should be allocated for execution, each to ex-
actly one processor. Task execution is performed in
a non-preemptive way: once the task starts it will
continue without interruption until completion. We
denote by T = {1,2, . . . ,n} a given set of indepen-
dent tasks, and by M = {1,2, . . . ,m} the set of iden-
tical processors. Each processor can engage only one
task at a time. Let pi denote the processing time
of task i (i = 1,2, . . . ,n), which is a priori known
and fixed, and let y j (j = 1,2, . . . ,m) represent the
load of processor j calculated as the sum of process-
ing times of all tasks assigned to processor j. The
goal is to find a schedule of tasks on processors such
that the corresponding completion time of all tasks
(makespan) is minimized (Davidović et al., 2012).
The makespan is usually denoted as Cmax and calcu-
lated as: Cmax = max j∈M(y j). P||Cmax can be formu-
lated as integer linear program (ILP) based on the as-
signment variables (Mokotoff, 2004), on the arc-flow
model (Mrad and Souayah, 2018) or in some other
ways (Unlu and Mason, 2010). Although the opti-
mality of provided solutions is guaranteed, these for-
mulations have limitations in practical use: they re-
quire a lot of time and memory, even for small-size
instances. Therefore, after briefly reviewing some of
the relevant results below, we propose heuristic ap-
proaches that can be more efficient in practice.

P||Cmax is by far the most studied among all com-
pletion time related criteria and an enormous body of
knowledge, technical results, and connections to real-
world problems has been accumulated in this area.
We could think of production lines where several ma-
chines with the same speed have to perform a cer-
tain amount of jobs (Mokotoff, 2004), or minimizing
the overall CPU-time for identical processors by effi-
ciently assigning tasks (Graham, 1969; Frachtenberg
and Schwiegelshohn, 2010; Davidović et al., 2012).

(Lawrinenko, 2017) contains an extensive sur-
vey of the P||Cmax, in-depth explanations of exact
algorithms, while (Walter and Lawrinenko, 2017)
presented a depth-first branch-and-bound algorithm
with symmetry-breaking dominance criteria. Ex-
act algorithms state-of-the-art application (Mrad and
Souayah, 2018) presents an arc-flow based ILP model
inspired by the duality between the bin-packing and
the P||Cmax and discuss the hardness of test instances
expressed by n and m ratio.

(Della Croce and Scatamacchia, 2020) revisited
Longest Processing Time (LPT (Graham, 1969)) and
derived an O(nlogn) time complexity constructive
heuristic. Two procedures of constructive heuristic
approach, (Paletta and Ruiz-Torres, 2015), are con-
structing a feasible solution, and then Many Times
Multifit (MTMF) procedure tightening the initial so-

lution by iteratively using a bin-packing based pro-
cedure on different job sets. Iterative heuristic ap-
proach, (Paletta and Vocaturo, 2011), also builds upon
initially constructed feasible solution, and use local
search techniques where single jobs or sets of jobs are
exchanged between different machine pairs (i1, i2).
Approximation heuristic approach (Mnich and Wiese,
2015) show that there is an Fixed-parameter tractabil-
ity (FPT) algorithm for this problem when parameter-
ized by pmax (the largest job processing time). Several
Efficient Polynomial Time Approximation Schemes
(EPTAS) for the P||Cmax exist (Jansen et al., 2020).

Among the first metaheuristic approaches, Tabu
Search (TS) is proposed in (Thesen, 1998). A
rather simple implementation of Variable Neighbor-
hood Search (VNS) is proposed in (Davidović and
Janićijević, 2009). The authors of (Alharkan et al.,
2018) extended its study to more general variant
of VNS, investigating the effect of including new
neighborhood structures and changing the order in
which the neighborhoods are explored. Bee Colony
Optimization (BCO) metaheuristic was developed in
(Davidović et al., 2012) exploring stochastic LPT rule
to construct feasible solutions. (Laha and Gupta,
2018) improved Cuckoo Search Algorithm (CSA)
and explored LPT construction scheme, but included
the pairwise exchange neighborhood in the improve-
ment phase. Grey Wolf Optimiser (GWO) algorithm
in (Kamaraj and Saravanan, 2019) starts from ran-
domly generated population and explores GWO rules
attempting to improve selected subset of solutions.

3 THE PROPOSED HEURISTIC
ALGORITHMS FOR P||Cmax

Our approach consists of building heuristics through
transformations that have a potential to improve the
quality of solutions. We present the process of build-
ing the proposed 35 variants of the heuristic algo-
rithms for P||Cmax and discuss their implementation,
including dependence on initial solution and com-
plexity of the implementation. The latter is reduced
by carefully defined solution representation and per-
formed pre-processing. The variants of heuristic algo-
rithms differ by the type of transformation applied to
the given initial solution and by the way initial solu-
tion is obtained. All the variants can be described by
the steps presented in the remainder of this section.

3.1 Description of Transformations

The quality of a solution is defined by Cmax that rep-
resents the execution time of the most heavily loaded

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

260

processor (k). The only way to improve the current
solution is to reduce its load by moving a task to some
other processor l. At the same time, the new load of
the processor l should not exceed the previous Cmax.
However, constant improvement of the solution qual-
ity could result in undesired outcome: getting stuck
in a local optimum. For P||Cmax, in majority of the
cases, the only way to improve the current solution
is to degrade its quality first. Therefore, we define
stochastic transformations that do not necessarily im-
prove the current solution.

We define two classes of transformations depend-
ing on selection strategies for reallocation task and
destination processors for them. Transformations are
composed of steps that could be realized in differ-
ent ways, i.e., by performing different actions on
the given input solution. Different actions are coded
by different indicators combined in the input vector
Ind. Even though two classes of transformations have
some similar steps, their number is different, thus
we present two different algorithms. Each algorithm
starts with an initial solution (Sol) and performs the
corresponding transformation as it is defined by the
input parameters from the Ind vector.
First class transformations’ five steps are in Algo-
rithm 1. First step of each transformation (SProc): the
most heavily loaded processor k is identified. SProc
is also the source of the task i to be moved.

Algorithm 1: Class 1 transformation.

1 Trans f orm(Sol, Ind)
2 k← SProc(Sol, Ind)
3 i← TaskID(Sol, Ind,k)
4 l← DProc(Sol, Ind,k)
5 Move(Sol,k, i, l)
6 Swap(Sol, Ind,k, l)
7 return(Sol)

The second step (TaskID): selecting the task i
to be moved from processor k. Three different ac-
tions we used to perform it are 1. random selection
(denoted by MR), 2. roulette wheel with the higher
probability to select longer tasks, (marked by MRL),
3. roulette wheel with the higher probability to select
shorter tasks, (denoted by MRS).

The third step (DProc): selecting the destination
processor for task i. The five different actions are
as follows. The first is completely random (DRand),
while the remaining four assume the roulette wheel
application involving a subset of promising proces-
sors and giving the higher probability to the less
loaded processors. In this step the following param-
eters are used: y = minh∈[1,m] yh - load of the least

loaded processor, ŷ - load of the most loaded pro-
cessor k, ȳ - constant defined as average load of all
processors, and LB = dȳe - constant defining theoret-
ically the best objective function value of P||Cmax. In
the first roulette action (DROpt), the considered sub-
set is composed of the processors with load belong-
ing to the interval [LB,y]. The second (DRYmax)
considers the complete set of processors. The third
(DROpt1) the processor loads are limited by LB+ 1
and y, while the corresponding interval for proces-
sor load in the fourth roulette action (DRUpper) is
bounded by dȳ+1e and y.

In the fourth step task i is moved from pro-
cessor k to processor l, performed by procedure
Move(Sol,k, i, l). The fifth step, not mandatory, con-
siders the possibility of swapping tasks. More pre-
cisely, for task i that was moved from processor k to
processor l, a number of shorter tasks is reallocated
from l to k, in such a way that the load of k does not
exceed LB value. This process starts with the longest
possible task from processor l that satisfies the above
mentioned condition - procedure is performed as long
as possible and denoted as Swap(Sol, Ind,k, l).

Algorithm 2: Class 2 transformation.

1 Trans f orm(Sol, Ind)
2 k← SProc(Sol, Ind)
3 l← DProc(Sol, Ind,k)
4 Mix(Sol,k, l)
5 return(Sol)

Second class transformations contain tree steps (Al-
gorithm 2). The first is the same as the first step in
class 1, while the second is same as the third step in
class 1. In the third step, denoted as Mix(Sol,k, l),
tasks from processors k and l of the current solution
Sol are rearranged in a deterministic way as follows.
First, a subset of tasks with the sum of loads as close
as possible to LB is selected with the knapsack 0-1
algorithm and allocated to processor k. Then the re-
maining tasks are allocated to processors l. Table 1
summarizes both classes transformations notation.

3.2 Complexity Evaluation

To efficiently perform the transformations, solutions
are represented by four structures:

• tasksOnProcessor - 2D vector (k, i) representing
index of i-th task scheduled on processor k.

• tasksOnProcessorSet - k-th value of 1D vec-
tor represents set of tasks scheduled to proces-
sor k. The set is balanced binary tree, each

Comparative Analysis of Heuristic Approaches to P||Cmax

261

Table 1: Transformations nomenclature.

Step Action Indicator

SProc() deterministic

TaskID()
random MR
roulette (longest) MRL
roulette (shortes) MRS

DProc()

random DRand
roulette [LB,y] DROpt
roulette [ŷ,y] DRYmax
roulette [LB+1,y] DROpt1
roulette [UB(ȳ+1),y] DRUpper

Move() deterministic

Swap() NONE
Sw

Mix() mix

Table 2: Transformation complexity.

Indicator Time Memory

SProc O(1) O(m)

MR O(1) O(n)
MRL O(1) O(n)
MRS O(1) O(n)

DRand O(1) O(m)
DROpt O(1) O(m)
DRYmax O(1) O(m)
DROpt1 O(1) O(m)
DRUpper O(logm) O(m)

Move O(logn) O(n)
Sw O(n logn) O(n)

mix O(n ·LB+ logm) O(n ·LB+m)

node is 2-tuple (pi, index of task i in vector
tasksOnProcessork). The sets are sorted in non-
decreasing order, by pi first and then by the sec-
ond value of a tuple.

• processorLoad - 1D vector with k-th value repre-
senting the load of processor with id k. More pre-
cisely, processorLoadk = ∑ j∈tasksOnProcessork

p j.

• processorLoadSet - Set of processors. The set is
a balanced binary tree, where l-th node is 2-tuple
(processorLoadl , id of processor with l-th load).

3.3 Iterative Heuristics Approach

Having all the transformations characterized by ac-
tions taken to transform a solution, we defined 35
heuristic algorithms for P||Cmax. Each heuristic re-
peatedly calls the corresponding transformation to

Algorithm 3: Iterative heuristic.

1 Heuristic(Sol, Ind,StopCrit)
2 BestSol← Sol
3 while StopCrit is not met do
4 Trans f orm(Sol, Ind)
5 if (y(Sol)< y(BestSol)) then
6 BestSol← Sol
7 end
8 end
9 return BestSol

modify the current solution until the stopping crite-
rion is met. After the transformation is completed,
the quality of the obtained solution is compared to
the best so far and the corresponding update is per-
formed. At the end, the best obtained solution is re-
ported. The main components of our iterative heuris-
tics approach are presented in Algorithm 3. Inputs
to our algorithm are an initial solution Sol, transfor-
mation indicator Ind, and the stopping criterion for
heuristics. The most common stopping criteria are the
maximum number of iterations nit and the maximum
allowed CPU time tmax.

4 EXPERIMENTAL EVALUATION

Comparative analysis of our iterative heuristics ap-
proaches is performed in a simulator we built in C++
and compiled with gcc version 7.5.0. All the runs
were performed on Intel(R) Core(TM) i5-6400 CPU
@ 2.70GHz with 8GB RAM under Ubuntu 7.5.0-
3ubuntu1∼18.04. In the remainder of this section we
explain all details of the performed experiments.

4.1 Simulation Environment

In previous section we defined 35 heuristic algorithms
for P||Cmax based on various solution transformations
performed iteratively aiming to lead towards optimal
solution. Due to the stochastic nature of proposed
transformations, all the factors influencing their vari-
ability need to be explored. We present our heuristic
algorithms effectiveness with respect to solution qual-
ity and convergence, depending on the initial solution
and number of transformations required to reach the
solution of good quality. In addition, we examined
the stability of transformations, i.e., the variations of
results depending on the random number generator
seed value initialization. Our generated testing envi-
ronment is presented in Algorithm 4.
The initial solution we obtained applying the random

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

262

Algorithm 4: Testing environment.

1 Run(nrun,nit , Ind)
2 for i← 1 to nrun do
3 Seed← i
4 Sol← Init ()
5 Heuristic(Sol, Ind,nit)

U pdate(SolBase)
6 end
7 return SolBase

and greedy approaches. The random initial solution is
determined by allocating randomly selected task i to
the randomly selected processor k. Time complexity
of this random procedure is O(n logn+m logm). For
greedy algorithm, we selected list scheduling proce-
dure based on LPT rule used for ordering tasks and
Earliest Start (ES) heuristic to determine the most ap-
propriate processor. This implies sorting the jobs in
non-increasing order of processing times before they
are scheduled to the least loaded processor (Graham,
1969; Davidović et al., 2012). LPT+ES constructive
heuristic is in fact an approximation algorithm with
the worst-case approximation ratio 4/3−1/(3m). Its
time complexity is O(n logn+ n logm) and it is per-
formed in preprocessing phase. Each run starts from
either different random solution or from the same
LPT+ES solution.
Testing Environment. input values for our heuris-
tics are the number of repetitions nrun (the stopping
criterion of the corresponding test), the number of it-
erations (transformation applied) nit , and the vector
Ind containing indicators which transformation to be
considered. In each run, an initial solution of P||Cmax
is generated and then the transformation defined by
the vector Ind is performed repeatedly, until the stop-
ping criterion is satisfied, i.e., until nrun repetitions
are completed. All obtained solutions are saved in
SolBase, together with the required number of trans-
formations and the corresponding running times.
Test Instances. We evaluated the proposed heuris-
tic algorithms on the known set Iogra of hard bench-
mark problem instances with the known optimal value
of the objective function used in (Davidović et al.,
2012). The number of tasks in these instances range
is n ∈ {50,100,200,250} and there are 28 instances
in total. Several studies have shown that hardness
of instances increase with increasing the value of
n/m (Mrad and Souayah, 2018), but this doesn’t ap-
ply for Iogra set. In fact, for fixed number of ma-
chines, the hardness of problem instances decreases
as the number of tasks increases. In addition, for fixed
number of tasks the problem instances become harder
as number of machines increases, regardless the de-

crease in n/m. The hardest test instances are with 50
tasks (Jakšić Krüger, 2017). Therefore, comparative
analysis of heuristics is depicted on 7 test instances
with 50 tasks.

4.2 Comparative Analysis Methodology

We set nrun = 100 to repeat algorithm’s execution for
different values of random number generator seed due
to stochastic nature of presented heuristic algorithms.
After each run we record: solution, solution’s qual-
ity, number of iterations and time required to generate
the best (optimal) solution for the first time. In order
to capture central tendencies of these results we em-
ploy descriptive statistics such as mean, median and
the corresponding dispersion statistics. The goal is to
gauge the effectiveness of our algorithms, i.e., to esti-
mate an effort needed to reach the optimal solution.
Performance Measures. Due to high efficiency of
our algorithms, the dominant performance measure is
number of times the optimal solution is reached (nopt)
within nrun repetitions. Other performance measures:
average solution quality, average or maximal runtime
and the corresponding number of iterations. The aver-
age quality of solutions ȳmax is important in case when
the optimal solution is never reached. We also em-
ploy ȳmax in graphical representations of our results.
An important concept for our comparison study is the
definition of poor performance. We define a trans-
formation’s poor performance if an average quality
of solutions is worse than in case of transformations
that obtained the optimum. Measure of time is im-
portant due to the fact that duration of one iteration
is different w.r.t. to type of transformation. The iter-
ation count may be misleading and overly optimistic
for methods that invoke more work within one itera-
tion. For some transformation A we determine run-
time tA as tA = max1≥seed≥nrun tseed , where tseed is the
first-hit time of the best solution for the given seed.
Stopping Criteria Evaluation. A high value for nit
might lead to a better solution quality, but for heuris-
tic approaches it is hard to predict how far from the
optimum we are. The most suitable value for nit is
when algorithms reach stagnation, i.e., there is no so-
lution improvements anymore. After performing ini-
tial evaluation, we set nit = 10000 as a stopping cri-
terion for empirical analysis of the proposed heuris-
tic algorithms. As each transformation needs differ-
ent time to execute nit iterations, we report the time
required to complete all of them and the number of
iterations required to find the best reported solution.
Methodology of Selecting Good Transformations.
Our comparison study of heuristics on Iogra bench-
mark set is based on nopt , ȳmax, and tA. To represent

Comparative Analysis of Heuristic Approaches to P||Cmax

263

whether optimal solution was found and how often,
our results are two-dimensional scatter plots with nopt
represented by the size of the circle (see Fig. 1). The
ranking procedure is performed in two phases. The
first phase criterion awards the transformations that
reached an optimal solution within nrun repetitions.
All such transformations are removed from the rank-
ing pool and used to define the performance of the
remaining transformations. The second phase crite-
rion awards the transformations that have a better av-
erage solution quality than the removed transforma-
tions. Whenever the heuristic algorithm achieves one
of these goals we appoint 1 to its rank. We repeat this
process for all problem instances from Iogra set.

4.3 Results

Selection of Good Heuristics. In Fig. 1 we present
scatter plot for all 70 tested variants (IR random ini-
tial solution, IL greedy initial solution) for problem
instance Iogra50 and variable number of processors.
The position of the point on the graph is determined
by number of iterations needed to either reach opti-
mum or a given average solution. Comparing heuris-
tics grouped by IR and IL, we do not detect signif-
icant changes in the performance w.r.t. average so-
lution quality and average number of iterations indi-
cating that the initial solution does not influence sig-
nificantly. Obviously, the transformations positioned
at the lower left corner of graphs perform the best.
Then, we clearly demonstrate that transformations de-
picted as points in the upper left region of the plot in
Fig. 1 for instances with m≥ 6 characterised by small
runtime and low average solution quality performed
the worst. They exhibit premature convergence prop-
erty, reaching their best solution early in the execution
stages and mainly call MRS action. Next, a group
of heuristics at the right parts of the plots in Fig. 1
(mostly Drand with MR or MRL strategies) for m≥ 4
also performed poorly, due to the fact that the average
required number of iterations is large. Finally, from
the same figure we see that combination of DRYmax
with MR or MRL strategies perform badly.
Performance Discussion. Good heuristics are ranked
based on their performance on all testing instances.
The largest rank is appointed to all heuristics pre-
sented in Table 3. It contains the results for Iogra50
organized as follows. Each heuristic variant is iden-
tified by the acronym (first column). The indicators
of different initial solution (IR, IL) are in the second
column and the percentage of found optimal solutions
is in the third column. The fourth column contains
ȳmax. In the last two columns, the average number of
iterations required to obtain the best solution and the

corresponding average CPU times are given. For all
average values, standard deviations are also provided.

From Table 3 we note the following. MRL-
DROpt-Sw and MRL-DROpt1-Sw were not as suc-
cessful in finding an optimal solution as the other
three methods, but the variability of the results is low
- they produce the best average quality of solutions.
In addition, all heuristics with Mix() step belong to
the so-called good heuristics that produce optimal so-
lutions for Iogra test set in the largest percentage of
runs. Including the action Swap(), significantly in-
creases the performance w.r.t. nopt . Action DProc() is
the most efficient when combined with actions such
as DROpt and DRUpper.

The initial solution has significant influence in
the case of the last two (MRL-DROpt-Sw and MRL-
DROpt1-Sw) where random initial solutions prevent
reaching the optimal solution. We can note that all
heuristics are very stable in reaching high-quality so-
lutions as the average values of ȳmax are close to the
optimums and the standard deviations are small (ex-
cept for heuristics that used Mix() action where in
some sporadic cases the low quality solutions are pro-
vided). Based on the average number of iterations,
it can be concluded that our selected heuristics reach
their best solutions very fast, except in some isolated
cases. This is confirmed by the CPU time data pro-
vided in the last column. Our analysis shows that
the selected heuristics are very fast in providing high-
quality solutions for the hard benchmark instances of
P||Cmax and thus can be an useful tool in more general
frameworks, such as metaheuristics.

5 CONCLUSION

In this paper we proposed several stochastic iterative
heuristic algorithms to efficiently deal with the prob-
lem of static scheduling of independent tasks on ho-
mogeneous multiprocessors. We created 35 heuris-
tic algorithms by combining various actions to de-
fine solution transformations aimed at improving so-
lution quality. Testing was performed for 2 variants
of choosing the initial solution which resulted in 70
variants to be tested. We have conducted an extensive
numerical experiments on hard benchmark instances
from the literature. Among the tested 70 variants, we
identified 10 the best performing heuristics with re-
spect to the solution quality, running time, and stabil-
ity. As the future work we plan to evaluate our heuris-
tics on other sets of test instances and to incorporate
the best performing heuristics in some metaheuristic
frameworks and examine their influence on the per-
formance of the resulting approaches.

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

264

Figure 1: Results of comparisons between 35 transformations on 7 problem instances from Iogra50 set.

Comparative Analysis of Heuristic Approaches to P||Cmax

265

Table 3: 10 best heuristics on Iogra50, m = 2,4,6,8,9,12,16. Each average result has the standard deviation.

Heuristic Init() sum.opt[%] ȳmax Av. iter Av. tA [10−3sec]

DRand-Mix IR 70 602.91 ± 5.57 25.85 ± 27.94 0.90 ± 0.46
IL 71 602.45 ± 5.11 27.69 ± 32.08 0.98 ± 0.86

MR-DROpt-Sw IR 68.4 600.66 ± 1.16 729.38 ± 320.19 2.44 ± 2.13
IL 66.8 600.66 ± 1.08 754.44 ± 439.13 2.80 ± 2.26

DRYmax-Mix IR 68.3 602.47 ± 4.73 23.76 ± 28.53 0.80 ± 0.54
IL 70.7 601.63 ± 3.12 24.41 ± 31.14 0.71 ± 0.57

MRL-DROpt-Sw IR 0.6 601.3 ± 0.63 501.21 ± 509.95 1.59 ± 1.91
IL 14.3 601.20 ± 0.91 499.6 ± 501.94 1.18 ± 1.07

MRL-DROpt1-Sw IR 0.6 601.32 ± 0.69 762.56 ± 830.41 2.63 ± 3.35
IL 14.3 601.23 ± 0.99 771.03 ± 816.83 2.02 ± 2.41

ACKNOWLEDGEMENTS

This work was partially supported by the Science
Fund of Republic of Serbia AI4TrustBC project and
by the Serbian Ministry of Education, Science and
Technological Development, Agreement No. 451-03-
9/2021-14/200029. The authors thank Penn State GV
IT team for the support.

REFERENCES

Alharkan, I. et al. (2018). An order effect of neighborhood
structures in variable neighborhood search algorithm
for minimizing the makespan in an identical parallel
machine scheduling. Math. Problems in Engineering.

Davidović, T. et al. (2012). Bee colony optimization for
scheduling independent tasks to identical processors.
Journal of Heuristics, 18(4):549–569.

Davidović, T. and Janićijević, S. (2009). VNS for schedul-
ing independent tasks on identical processor. In Proc.
36th Symp. on Operational Research, SYM-OP-IS
2009,, pages 301–304, Ivanjica.

Della Croce, F. and Scatamacchia, R. (2020). The longest
processing time rule for identical parallel machines re-
visited. Journal of Scheduling, 23(2):163–176.

Fanjul-Peyro, L. and Ruiz, R. (2010). Iterated greedy
local search methods for unrelated parallel machine
scheduling. European Journal of Operational Re-
search, 207(1):55–69.

Frachtenberg, E. and Schwiegelshohn, U. (2010). Pref-
ace. In 15th Internation Workshop, JSSPP 2010, Job
Scheduling Strategies for Parallel Processing, pages
V–VII.

Graham, R. L. (1969). Bounds on multiprocessing timing
anomalies. SIAM journal on Applied Mathematics,
17(2):416–429.

Jakšić Krüger, T. (2017). Development, implementation
and theoretical analysis of the bee colony optimiza-
tion meta-heuristic method. PhD thesis, Faculty of
tehnical sciences, University of Novi Sad.

Jansen, K. et al. (2020). Closing the gap for makespan
scheduling via sparsification techniques. Mathemat-
ics of Operations Research, 45(4):1371–1392.

Kamaraj, S. and Saravanan, M. (2019). Optimisation of
identical parallel machine scheduling problem. Int.
Journal of Rapid Manufacturing, 8(1-2):123–132.

Laha, D. and Gupta, J. N. (2018). An improved cuckoo
search algorithm for scheduling jobs on identical par-
allel machines. Computers & IE, 126:348–360.

Lawrinenko, A. (2017). Identical parallel machine
scheduling problems: structural patterns, bounding
techniques and solution procedures. PhD thesis,
Friedrich-Schiller-Universität Jena.

Mnich, M. and Wiese, A. (2015). Scheduling and fixed-
parameter tractability. Mathematical Programming,
154(1):533–562.

Mokotoff, E. (2004). An exact algorithm for the identical
parallel machine scheduling problem. European Jour-
nal of Operational Research, 152(3):758–769.

Mrad, M. and Souayah, N. (2018). An arc-flow model for
the makespan minimization problem on identical par-
allel machines. IEEE Access, 6:5300–5307.

Paletta, G. and Ruiz-Torres, A. J. (2015). Partial solutions
and multifit algorithm for multiprocessor scheduling.
Journal of Mathematical Modelling and Algorithms in
Operations Research, 14(2):125–143.

Paletta, G. and Vocaturo, F. (2011). A composite algorithm
for multiprocessor scheduling. Journal of Heuristics,
17(3):281–301.

Pinedo, M. L. (2012). Scheduling: theory, algorithms, and
systems. Springer Science & Business Media.

Thesen, A. (1998). Design and evaluation of a tabu search
algorithm for multiprocessor scheduling. J. Heuris-
tics, 4(2):141–160.

Unlu, Y. and Mason, S. J. (2010). Evaluation of mixed in-
teger programming formulations for non-preemptive
parallel machine scheduling problems. Computers &
Industrial Engineering, 58(4):785–800.

Walter, R. and Lawrinenko, A. (2017). Lower bounds and
algorithms for the minimum cardinality bin covering
problem. European Journal of Operational Research,
256(2):392–403.

ICORES 2022 - 11th International Conference on Operations Research and Enterprise Systems

266

